动态规划-673. 最长递增子序列的个数

本文介绍了如何使用动态规划解决找到给定未排序整数数组中最长递增子序列个数的问题。通过定义状态和状态转移方程,详细阐述了算法思路,包括初始化、状态转移规则以及如何获取最终结果。
摘要由CSDN通过智能技术生成

题目描述:
给定一个未排序的整数数组,找到最长递增子序列的个数。

示例 1:

输入: [1,3,5,4,7]
输出: 2
解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。
示例 2:

输入: [2,2,2,2,2]
输出: 5
解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5。
注意: 给定的数组长度不超过 2000 并且结果一定是32位有符号整数。
题目来源:673. 最长递增子序列的个数

1.定义状态:
记录最长长度dp[i]:到nums[i]为止最长递增子序列长度,包括nums[i]。
记录最长长度对应的数量count[i]:到nums[i]为止最长递增子序列的个数。
2.初始化状态:
Arrays.fill(dp , 1):到任意一个元素的最长子序列长度最小为1,初始化所有的dp都为1。
Arrays.fill(count , 1):到任意一个元素的最长子序列数量最少为1个。
3.状态转移
我们先思考什么时候子序列长度会增加?也就是你要遍历的新元素比你已经遍历过的元素大的时候才会增加,那么这种遍历我们应该怎么处理?

for(int i = 0 ; i < nums.length ; ++i){
   
   for(int j  = 0 ;  j < i ; ++j){
                 
}

这样的两层for循环,外循环从起始位置遍历到终止位置,内循环从起始位置遍历到外循环当前遍历的位置。紧接上面,也就是说nums[i] > nums[j] 时我们要进行状态转移操作,那应该怎么操作?

如果nums[i] > nums[j],那么相当于到nums[j]为止的最长递增子序列长度到nums[i]增加了1,到nums[i]为止的最长递增子序列长度就变成了dp[i] = dp[j] + 1;但是因为满足nums[i] > nums[j] 的nums[j]不止一个,dp[i]应该取这些dp[j] + 1的最大值,并且这些dp[j] + 1还会有相等的情况,一旦相等,到nums[i]为止的最长递增子序列个数就应该增加了。因此,具体的状态转移如下,在nums[i] > nums[j]的大前提下:
如果dp[j] + 1 > dp[i],说明最长递增子序列的长度增加了,dp[i] &

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值