LeetCode 673. 最长递增子序列的个数(动态规划;线段树)

本文探讨LeetCode 673题的解决方案,通过动态规划和线段树来找到最长递增子序列的个数。首先介绍DP方法,基于LeetCode 300题的解法进行改进,维护一个额外数组记录以每个位置结尾的最长递增子序列数量。然后讨论线段树的思路,但内容未完全展开。文章提供了两个参考资料链接供深入学习。

2020年9月23日 周三 天气晴 【不悲叹过去,不荒废现在,不惧怕未来】



1. DP

本题的DP解法需要在 LeetCode 300. 最长递增子序列(动态规划,贪心+二分)DP解法的基础上进行修改,新增数组cntcnts[i]表示以位置 i 结尾的最长递增子序列的个数。

如果nums[i]大于nums[j],由lens[i](表示位置i处的最长递增子序列的长度)和lens[j]+1的大小,判断位置i是否是第一次遇到最长子序列,如果是的话(lens[i]<lens[j]+1),当前最长子序列的个数cnts[i]就等于cnts[j];否则就代表已经遇到过最长子序列了,cnts[i]就等于自身的值加上cnts[j]

两次循环结束后,求最长递增子序列的长度,然后把拥有最长长度的次数加起来即为所求。

class Solution {
   
   
public:
    int findNumberOfLIS(vector<int>& nums) {
   
   
        int n = nums.size();
        if(n<2) return n;
        vector<int> 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值