张益唐:零点猜想论文第二稿最快今年见,「技术细节不好写」,已开始准备投稿...

明敏 克雷西 发自 凹非寺
量子位 | 公众号 QbitAI

备受瞩目的张益唐零点猜想论文第二稿,发布时间更明确了!

或者明年上半年,同时也在准备投稿了。

在阿里巴巴数学全球竞赛专场讲座上,张益唐亲口透露了这一消息。

2af84020159d40a19e3ec3997cf7778f.png

和参赛选手对话时,他表示目前还在对第二版论文进行调整和完善。

我确实把它做出来了,我的结果是对的……但是我没有想到把它写出来技术细节如此复杂。

而除了聊零点猜想的最新进展外,张益唐还分享了很多自己对黎曼猜想、数论、如何做数学的看法,还有生活上的一些趣事。

比如,他从来不看评教网站,但是有听说学生对自己的评价还不错;写零点猜想论文第二稿,他觉得很不好写、很头疼……

24c6490d2682bfea0e62b88256515063.png

量子位在不改变原意的基础上,将对话进行了实录整理,亮点如下:

  • 零点猜想论文的最大亮点是提出了一个几乎不可能的函数。

  • 论文第二版很不好写、很头痛,想尽量写清楚明白。

  • 数学发展很难预测,可能今天大家还很悲观的问题,突然就会被解决。

  • 越好的数学,应该越朴素

  • “我非常佩服陈景润,他对我影响很大。”

  • 中国数论学派很会算的传统不要丢,AI发展很好的情况下,人也应该会计算(广义上的计算)。

  • 做数学要耐得住寂寞,注意基础功底。

完整内容,在此奉上~

(参加对话的参赛选手分别是:斯坦福大学张盛桐、多伦多大学王璟晗、北京大学陈泽坤以及数学爱好者快递小哥孙金元)

AI时代人还是要会计算

“论文第二版确实很不好写、很头痛”

斯坦福张盛桐:张老师您好,我是来自斯坦福大学的张盛桐,现在主要在做组合,也关注数论解析方面的内容,关于关于Siegel零点猜想的那篇论文,我其实没有看懂。所以好奇关于零点猜想最近有哪些研究方向?这个论文是如何产生的?

张益唐:这个事情很有意思。关于零点猜想可能发表的论文不多,但是我和很多专家聊过,大家其实都知道有一个可能的方向——我们是要证明Landau-Siegel零点不存在

如果我假设它存在,或者在一定范围内存在。这个问题本来是一个单独的Siegel L函数的零点,我可以将它和一个很大的family of the L函数的零点分布连在一起。在很大的family of L函数的零点分布上会有一些非常强的结果,这个事情很有意思,而且它可以得出一个非负的不等式。

因为我顺便想到Riemann ζ 函数和Dirichlet L 函数,如果它要乘上一个相对简单的γ因子的话,那么它在1/2这条线上,就它实部等于1/2这条线上,它可以取实,这是可以从内函数方程式得出来的,它就是个实函数。

如果是实函数,那么它肯定是连续、可微,它有一个中值定理,如果它在一个区间上不等于0,那么它就永远是正的,或者永远是负的。于是我能得出一个正的不等式,给出一定的函数,对每一个这样的L函数,在那条线上一定区间里,有一个表达式一定都是非负的。

488739fc0c01f2125804c1aed9dd4ff2.png

于是,有点像这个东西的想法。我给它去呈现一个非负的东西,然后再去求和,如果我能证明乘出来的这个非负东西求和是负的话,那就出现了矛盾。出现矛盾就说明,Landau-Siegel零点不存在

去年写的那个东西把这个有点搞复杂了,但本质上就是干这个事情。

我也可以确定我那个结果是对的,但我确实没把它写好。确实现在很头疼,非常不好写。但我还在想进一步简化,能不能把它写清楚。

我的第二版很快也会公布出来,同时也在准备投稿了。现在就处于这么一个状态。

“我讲课非常谨慎、比较下功夫”

斯坦福张盛桐:我有听说您上课非常受同学欢迎。

张益唐:你从哪里看到的?

斯坦福张盛桐:Rate my professor(北美非常著名的一个评教网站)。

张益唐:哦是吧,因为我从来不看这个,那你觉得我刚才讲的好不好哈哈?

斯坦福张盛桐:非常好。

张益唐:是吗?那谢谢你。对于教课,我觉得你们如果之后如果当教授、教课要记住一个东西,我们数学里面讲充要条件。真正懂这个东西,是你能教会、教好的必要前提,但不是充分条件,懂了不见得能讲好

因为我知道这一点,所以我在讲课的时候还是比较谨慎、比较会下功夫的。对于评价好不好,我也没有去网上看,反正听别人说大家对我评价还不错

8f977e06e3ec9a8ec5a581a5ddee215c.jpeg
张益唐上课࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值