科研党狂喜!AI预测神经学研究结论超过人类专家水平 | Nature子刊

奇月 发自 凹非寺
量子位 | 公众号 QbitAI

LLM可以比科学家更准确地预测神经学的研究结果!

最近,来自伦敦大学学院、剑桥大学、牛津大学等机构的团队发布了一个神经学专用基准BrainBench,登上了Nature子刊《自然人类行为(Nature human behavior)》。

结果显示,经过该基准训练的LLM在预测神经科学结果的准确度方面高达81.4%,远超人类专家的63%。

在神经学常见的5个子领域:行为/认知、细胞/分子、系统/回路、神经疾病的神经生物学以及发育/塑性和修复中,LLM的表现也都全方位超过了人类专家。

更重要的是,这些模型被证实对于数据没有明显的记忆

也就是说,它们已经掌握了一般科研的普遍模式,可以做更多的前瞻性(Forward-looking)预测、预测未知的事物。

702af38c7d058a9f32e7b5f0a36208c0.png

这立马引发科研圈的围观。

多位教授和博士后博士后也表示,以后就可以让LLM帮忙判断更多研究的可行性了,nice!

2160ebb129fa09b7f9ab6532a194da46.png
3bfe13fb0fd0f64db634ca4161be62a0.png
88c0b067675e78a5606155c9523b2212.png

LLM预测能力全面超越人类专家

让我们先来看看论文的几个重要结论:

总体结果:LLMs在BrainBench上的平均准确率为81.4%,而人类专家的平均准确率63.4%。LLMs的表现显著优于人类专家

5ed321ef658a0a1a6a14d65fda13b721.jpeg

子领域表现:在神经科学的几个重要的子领域:行为/认知、细胞/分子、系统/回路、神经疾病的神经生物学以及发育/塑性和修复中,LLMs在每个子领域的表现均优于人类专家,特别是在行为认知和系统/回路领域。

ebd41dfaf57f1146a1e8fb0a4160ed30.jpeg

模型对比:较小的模型如Llama2-7B和Mistral-7B与较大的模型表现相当,而聊天或指令优化模型的表现不如其基础模型。

人类专家的表现:大多数人类专家是博士学生、博士后研究员或教职员工。当限制人类响应为自我报告专业知识的最高20%时,准确率上升到66.2%,但仍低于LLMS。

置信度校准:LLMs和人类专家的置信度都校准良好,高置信度的预测更有可能是正确的。

64ee372d68eee42c8774b3530c6e5d56.png

记忆评估:没有迹象表明LLMs记忆了BrainBench项目。使用zlib压缩率和困惑度比率的分析表明,LLMs学习的是广泛的科学模式,而不是记忆训练数据。

全新神经学基准

本论文的一个重要贡献,就是提出了一个前瞻性的基准测试BrainBench,可以专门用于评估LLM在预测神经科学结果方面的能力。

0c4024359d25071f10aaaca5acc10586.png

那么,具体是怎么做到的呢?

数据收集

首先,团队利用PubMed获取了2002年至2022年间332807篇神经科学研究相关的摘要,从PubMed Central Open Access Subset(PMC OAS)中提取了123085篇全文文章,总计13亿个tokens。

评估LLM和人类专家

其次,在上面收集的数据的基础上,团队为BrainBench创建了测试用例,主要通过修改论文摘要来实现。

具体来说,每个测试用例包括两个版本的摘要:一个是原始版本,另一个是经过修改的版本。修改后的摘要会显著改变研究结果,但保持整体连贯性。

测试者的任务是选择哪个版本包含实际的研究结果

团队使用Eleuther Al Language Model EvaluationHaress框架,让LLM在两个版本的摘要之间进行选择,通过困惑度(perplexity)来衡量其偏好。困惑度越低,表示模型越喜欢该摘要。

对人类专家行为的评估也是在相同测试用例上进行选择,他们还需要提供自信度和专业知识评分。最终参与实验的神经科学专家有171名。

实验使用的LLM是经过预训练的Mistral-7B-v0.1模型。通过LoRA技术进行微调后,准确度还能再增加3%。

9295ec8a4e8ad1f20eb26bde34b2947c.png

评估LLM是否纯记忆

为了衡量LLM是否掌握了思维逻辑,团队还使用zlib压缩率和困惑度比率来评估LLMs是否记忆了训练数据。公式如下:

4dd0bbc3e0d4ada924acd6212fea6417.png

其中,ZLIB(X)表示文本X的zlib压缩率,PPL(X)表示文本X的困惑度。

部分研究者认为只能当作辅助

这篇论文向我们展示了神经科学研究的一个新方向,或许未来在前期探索的时候,神经学专家都可以借助LLM的力量进行初步的科研想法筛选,剔除一些在方法、背景信息等方面存在明显问题的计划等。

但同时也有很多研究者对LLM的这个用法表示了质疑。

有人认为实验才是科研最重要的部分,任何预测都没什么必要:

396e38bbe0aa864e9e40be9777e661cd.png

还有研究者认为科研的重点可能在于精确的解释

429ea091852363141a49fc99cc3b00c0.png此外,也有网友指出实验中的测试方法只考虑到了简单的AB假设检验,真实研究中还有很多涉及到平均值/方差的情况。

002925571c81aefa374406eaab65227f.png

整体来看,这个研究对于神经学科研工作的发展还是非常有启发意义的,未来也有可能扩展到更多的学术研究领域。

研究人员们怎么看呢?

参考链接:
[1]https://www.nature.com/articles/s41562-024-02046-9#author-information
[2]https://github.com/braingpt-lovelab/BrainBench

12月11日

「MEET2025智能未来大会」报名啦

💫 李开复博士、周志华教授、智源研究院王仲远院长都来量子位MEET2025智能未来大会探讨行业破局之道了!

💥 最新嘉宾阵容在此点击报名参会欢迎来到MEET智能未来大会,期待与您一起预见智能科技新未来!

8cc8ded63ffe62e9b0aead99be83d1ce.png

1f250fc372aa0ce5446882963df9a5ff.png

4fb1b756a326e48a5c439ebfa3b07791.png

79df8a4faf8737bab75dd4db4eeaaf09.png

79f8093f60a7256cbc32c10d934feaaa.png

5122b87f759e3f80d45fbd2a9ae4eb5d.png

60cdc7173d2af8986569c4c17ab48f34.png

cecacb466355e7c092dd0d6c34662eb1.png

f7675a51570f00cf29071ec8156d28a0.png

341f722c64cf69a22fe464840ea81a96.png

1ddf1c91bbed0c4b2a463d6a56a217a4.png

eee4c7fa165fcf286811e5a3d23ee410.png

8da193acb16b085806fd0e6843df6e9e.png

405e3b49f9c1140b4a4a6af7c7fa796e.png

9f45ff55be8d36f6f28622f872d836ea.png

925bc1976470ec8dc0e1122d338f5027.png

e64ffca973f86fe89157908a6d3a3099.png

0d226bf1a4a693fff7304971af6939c7.png

outside_default.png

左右滑动查看最新嘉宾阵容

outside_default.png

点这里👇关注我,记得标星哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值