PyTorch深度学习实践——2 线性模型(课后作业)

UP:B站-刘二大人

原视频链接:2.线性模型_哔哩哔哩_bilibili

from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt

x_data = [1.0, 2.0, 3.0]
y_data = [5.0, 8.0, 11.0] # y=3*x+2

def forward(x):
    return x * w + b

def loss(x, y):
    y_pred = forward(x)
    return (y-y_pred) * (y-y_pred)

W = np.arange(0.0, 4.1, 0.1)
B = np.arange(0.0, 4.1, 0.1)
mse_list = []

'''
语法:x,y = meshgrid(a,b)
作用:输入两个一维数组,输出两个二维数组x,y。其中矩阵x的行向量是向量a的简单复制,而矩阵y的列向量是向量b的简单复制。
a = np.linspace(0,2,3) # a = [0, 1, 2]
b = np.linspace(0,2,3) # b = [0, 1, 2]
x, y = np.meshgrid(a,b)
print(x)
# [[ 0.  1.  2.]
#  [ 0.  1.  2.]
#  [ 0.  1.  2.]]
print(y)
# [[ 0.  0.  0.]
#  [ 1.  1.  1.]
#  [ 2.  2.  2.]]
>>> c = [0, 1, 2]
>>> d = [0, 1]
>>> np.meshgrid(c,d)
[array([[0, 1, 2],[0, 1, 2]]), array([[0, 0, 0],[1, 1, 1]])]
'''

w, b = np.meshgrid(W, B)
loss_sum = 0
for x_val, y_val in zip(x_data, y_data):
    y_pred_val = forward(x_val)
    loss_val = loss(x_val, y_val)
    loss_sum += loss_val
print("mse=", loss_sum/len(x_data))
mse_list.append(loss_sum/len(x_data))

fig = plt.figure()
ax = Axes3D(fig)
ax.plot_surface(w, b, loss_sum/len(x_data), cmap='rainbow')
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值