彻底解决Mac与其他应用程序快捷键冲突的问题

彻底解决Mac与其他应用程序快捷键冲突的问题

更改应用程序菜单的快捷键或者Mac本身的快捷键

经常遇到用Mac上快捷键的时候,把应用程序里面的快捷键给打开了;
比如我设定的command + L 是锁屏,但是当我打开网易云音乐的时候,
按command + L的时候却是将网易云中当前播放的歌曲设为了喜爱,
并没有锁定电脑屏幕,造成了应用程序冲突;
下面的方法可以给大家解决这个问题,包括英文版的也可以;

第一步:

打开"系统设置",或者叫"系统偏好" 又或者回到桌面上按 (command+,)

在这里插入图片描述

第二步:

选择左边的 “键盘” --> 键盘快捷键…

在这里插入图片描述

第三步:

选择左侧的App快捷键 --> 点 + 号

在这里插入图片描述

第四步:

选择应用程序 --> 输入菜单标题(例如 “打开位置…” 名称一定要与菜单名称一致,包括标点符号)–> 键盘按下快捷键 --> 完成

最后如图:

菜单名称以及更改以后的样子

在这里插入图片描述

以上就是全部内容了。

<think>好的,我现在需要解决用户的问题:如何使用langchain4j进行starter项目的流式输出,并提供一个教程和示例代码。首先,我需要回忆一下langchain4j的相关知识,特别是流式输出实现方式。 用户提到了参考引用中的DeepSeek4J项目,可能和OpenAI4J有关联。不过用户的问题是关于langchain4j的,可能需要结合这个框架的文档或现有实现来回答。我记得langchain4j是一个Java的LangChain实现,用于集成大语言模型到应用中,支持流式响应。 首先,流式输出通常指的是逐步获取生成的文本,而不是等待整个响应完成。这在处理大模型时很有用,可以提升用户体验。在langchain4j中,可能通过异步调用或回调机制实现。 接下来,我需要确认如何配置starter项目。通常,Spring Boot的starter项目会通过自动配置简化集成。用户需要添加langchain4j的依赖,然后配置模型参数,比如API密钥、模型名称等。 然后,实现流式输出的关键步骤可能包括: 1. 创建支持流式的模型实例,比如OpenAIChatModel或DeepSeekChatModel。 2. 使用模型的流式方法,注册回调函数处理每个token。 3. 在Controller中暴露一个端点,返回流式响应,比如使用Spring的SseEmitter。 可能的代码示例结构: - 添加Maven依赖 - 配置application.properties - 创建服务类处理流式调用 - 创建Controller返回SSE流 需要确保代码正确使用langchain4j的API,比如使用StreamingResponseHandler来处理流式响应。同时,Spring的SseEmitter可以将流式数据发送到前端。 还需要注意异常处理和资源释放,比如在完成或出错时关闭流。另外,示例中可能需要使用具体的模型,比如OpenAI的GPT或DeepSeek的模型,确保配置正确。 最后,生成相关问题,可能涉及性能优化、错误处理、其他流式应用场景等。</think>以下是使用LangChain4j实现流式输出的分步教程及示例代码: ### 1. 添加依赖 ```xml <dependency> <groupId>dev.langchain4j</groupId> <artifactId>langchain4j-open-spring-boot-starter</artifactId> <version>0.22.0</version> </dependency> ``` ### 2. 配置参数(application.yml) ```yaml langchain: openai: api-key: ${OPENAI_API_KEY} model-name: gpt-3.5-turbo temperature: 0.7 timeout: 60 ``` ### 3. 服务层实现 ```java @Service public class StreamService { @Autowired private OpenAiChatModel chatModel; public SseEmitter streamResponse(String prompt) { SseEmitter emitter = new SseEmitter(60_000L); chatModel.generate(prompt, new StreamingResponseHandler() { @Override public void onNext(String token) { try { emitter.send(SseEmitter.event() .data(token) .id(UUID.randomUUID().toString())); } catch (IOException e) { emitter.completeWithError(e); } } @Override public void onComplete() { emitter.complete(); } @Override public void onError(Throwable error) { emitter.completeWithError(error); } }); return emitter; } } ``` ### 4. 控制器层 ```java @RestController @RequestMapping("/api/chat") public class StreamController { @Autowired private StreamService streamService; @GetMapping("/stream") public SseEmitter chatStream(@RequestParam String message) { return streamService.streamResponse(message); } } ``` ### 5. 前端调用示例(JavaScript) ```javascript const eventSource = new EventSource('/api/chat/stream?message=你好'); eventSource.onmessage = (e) => { console.log('收到数据:', e.data); // 这里可以实时更新UI }; eventSource.onerror = (e) => { console.error('流式传输错误:', e); eventSource.close(); }; ``` 关键实现要点: 1. 使用`StreamingResponseHandler`接口处理流式响应 2. 通过SSE(Server-Sent Events)协议实现数据推送 3. 每个token到达时立即发送到客户端 4. 超时时间建议设置为60秒(根据模型响应速度调整) 对于DeepSeek模型的集成,可参考类似模式替换模型实现: ```java @Bean public DeepSeekChatModel deepSeekModel() { return DeepSeekChatModel.builder() .apiKey(DEEPSEEK_API_KEY) .modelName("deepseek-chat") .temperature(0.8) .build(); } ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值