给定一个数组 prices
,它的第 i
个元素 prices[i]
表示一支给定股票第 i
天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0
。
示例 1:
输入:[7,1,5,3,6,4] 输出:5 解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。 注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
输入:prices = [7,6,4,3,1] 输出:0 解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
思路 : 暴力解法 双重循环 当然这会超时
一看到这种, 就想起了动态规划 参考了其他人的题解 代码如下
class Solution {
public:
int maxProfit(vector<int>& prices) {
/*
//一种思路 暴力解法 双重循环 只要 后边的比前边的大就行了 把最大的差赋值给收益,如果没有就返回 0
//可以通过但是超时
int sum = 0 ;
for(int i = 0;i<prices.size();i++){
for(int j = i+1;j<prices.size();j++){
if(prices[i]<prices[j]&&(prices[j]-prices[i])>sum){
sum = prices[j]-prices[i];
}
}
}
return sum;*/
//动态规划
//设置最小价格和最高收入
int max_income = 0;
int min_price = INT_MAX;
for(int price:prices){
max_income = max(max_income,(price-min_price));
min_price = min(min_price,price);
}
return max_income;
}
};