一、项目简述
本次项目需将 web-Movies 中的 movies.txt 文件导入 NEO4J 图形数据库中,并计算共同评论某几部电影最多的用户集合。项目大致分三步进行:提取 txt 文件——爬取电影名称——导入neo4j图形数据库——用Java连接数据库对其进行操作。
本项目可通过输入产品 id 或电影名称进行查询。
二、项目环境
本次项目在 window10 操作系统下进行,电脑内存为 16G,需用到的软件有 vscode、neo4j desktop、IntelliJ IDEA。
三、NEO4J 安装及配置
1.安装
NEO4J 官网的最新版为 4.2 版本,jdk 要求为 jdk11,而 jdk11 在虚拟内存管理方面存在 bug,使用 jdk11 完成大量数据的导入会有 Java Heap Space 报错,所以本项目使用 Neo4j 3.5 和 jdk1.8。
2.配置
在系统环境变量中添加NEO4J_HOME变量,变量值为neo4j下载的根目录。用cmd进入neo4j目录下的bin目录,使用如下命令完成 neo4j 服务的安装以及打开:
neo4j install-service
neo4j start
四、项目主体
1.提取 txt 文件
本项目需用到 review 文件中的 productId、userId、profileName 三项数据,利用 python 中的 xlwt 对文件进行提取和写入。
需要注意的是,如果要对全部文档进行提取,需考虑各编译器的内存读入因素,建议先将文档切割。此外,由于 xls 每个 sheet 最多只有 65000+行,所以在写入数据时需注意更换 sheet,或者换成存csv。
数据提取和写入的主要代码如下:
import xlwt
filename="movies\movies.txt"
movies=open(filename,"r",encoding="utf-8")
workbook = xlwt.Workbook(encoding = 'utf-8')
worksheet = workbook.add_sheet("movies")
worksheet.write(0,0,"productId")
worksheet.write(0,1,"userId")
worksheet.write(0,2,"profileName")
cnt=1
try:
line=movies.readline()#逐行读取
except:
continue
line=str(line)
if "product/productId" in line:
try:
productId=line.split(": ")[1]#获取产品 id
worksheet.write(cnt,0,productId)
except:
continue
elif "review/userId" in line:
try:
userId=line.split(": ")[1]#获取用户 id
worksheet.write(cnt,1,userId)
except:
continue
elif "review/profileName" in line:
try:
profileName=line.split(": ")[1]#获取用户昵称
worksheet.write(cnt,2,profileName)
cnt=cnt+1
except:
cnt=cnt+1
continue
workbook.save("reviews.xls")
movies.close()
由此,可以得到一个包括 productId、userId、profileName 的 excel 表,另存为 csv 后可用于数据库的导入。
2.获取电影名称
已经得到 productId 后,本项目还需获得另一个产品属性——电影名称,原始文件review.txt中缺少此项,本项目只能通过productId对Amazon网页进行爬虫获取电影名,获得的电影名与productId写入excel文件。关键代码如下(并不全面):
from selenium import webdriver
import pandas as pd
import xlwt
import threading
url = 'https://www.amazon.com/dp/'
#################################################################
#输入文件的路径,同一个文件夹的数据只需要输入文件名即可 #
#注意 excel 表格只能有一列的 asin 信息,而且第一行必须是字符串“asin”(无引号)#
################################################################
df=pd.read_excel('D:\\数据仓库\\data\\test.xlsx')
workbook = xlwt.Workbook