南瓜书第一章与第二章

本文介绍了机器学习的基本概念,包括研究目标、假设空间与版本空间的区分、样本和数据集的重要性,以及泛化、分布和归纳偏好的概念。强调了数据在模型构建中的关键作用和不同算法的效果差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一章 绪论

机器学习三观

what:研究关于“学习算法”的一门学科

why:理论研究,系统开发,迁移应用,AI应用

迁移应用:看懂推导,调用scikit-learn,学完前五章开始使用

假设空间和版本空间

假设空间

一个问题可以有很多假设空间,即假设等价表示自变量与因变量呈现什么关系,从而对应多种算法模型求解

版本空间

能够拟合训练集的模型(假设)构成的集合称为“版本空间”

假设空间大于版本空间,只有能够拟合的假设空间才能称之为版本空间。

基本术语

算法与模型

样本

对事件对象的描述,提取特征,

样本空间

特征向量所在的空间

数据集

相同特征的集合

标记

希望建模和学习的规律

泛化

衡量模型好坏的关键

分布

独立同分布

归纳偏好

基于模型在测试集上的表现来评价

数据决定模型的上限,算法让模型无限接近上限。

数据量越大模型效果越好

特征数值化越合理,特征收集越全越合理,效果越好

不同算法学习得到的模型效果有高低之分

参考:

[1]周志华. 机器学习. 清华大学出版社, 2016.

第1章-绪论_哔哩哔哩_bilibili

pumpkin-book/docs/chapter10/chapter10.md at master · datawhalechina/pumpkin-book (github.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值