基于Python的XX餐馆满意度分析 基于Python的鲁菜 粤菜等满意度分析 K-means算法 nlp情感分析(新出)(爬虫携程)

🔥作者主页:疯狂行者🔥 💖✌java领域优质创作者,专注于Java技术领域技术交流✌💖
💖文末获取源码💖
精彩专栏推荐订阅:在 下方专栏👇🏻👇🏻👇🏻👇🏻

Java精彩实战项目案例

Java精彩新手项目案例

Python精彩新手项目案例


# 前言 基于Python的XX餐馆满意度分析 基于Python的鲁菜 粤菜等满意度分析 K-means算法 nlp情感分析(新出)(爬虫携程)

一、系统功能

1.1 开发环境

  • 开发语言:Python
  • 技术:Django
  • 数据库:MySQL5.7
  • 架构:B/S
  • 源码类型:Web
  • 编译工具:PyCharm
  • 爬虫技术:Selenium
  • 算法:NLP情感分析+K-means算法

二、爬虫

2.1 爬虫概述

爬虫技术在数据驱动的应用中扮演了至关重要的角色,尤其在涉及大规模网络数据采集的情景中更是不可或缺。在本课题中,用户启动流程后,系统首先通过Selenium自动化框架执行信息抓取,目的是从携程网等在线平台高效采集鲁菜餐馆的详细信息,如名称、链接、平均消费、评分等。这些数据是进行后续分析的基础,涵盖了消费者评价和市场表现的多个方面。
数据抓取后,接下来的步骤是数据清洗,这一步骤至关重要,因为网络抓取的数据常常夹杂着许多不规范或错误的信息,如格式不一、错误的标签、无用的广告信息等。使用BeautifulSoup技术进行数据清洗,可以有效地从复杂的HTML代码中提取有价值的数据,并进行格式化处理,例如去除多余的空格和符号、转换数据格式等。这一步确保了数据的质量和可用性,为后续的数据分析奠定了坚实基础。
值得注意的是,系统在清洗数据的同时,也可能保留一部分原始数据不进行清洗。这样做可以为后续比较原始数据与清洗后数据的差异提供依据,或者用于执行一些基础的统计分析。这种策略允许研究人员或决策者从不同角度理解数据,增加分析的深度和广度。
在数据分析阶段,系统可能需要训练子模型来深入学习特定数据集的特征,这通常涉及到机器学习算法,如K-means聚类分析和协同过滤推荐算法。这些算法能够从数据中识别出模式和趋势,为用户提供精准的洞见和推荐,比如通过聚类分析发现哪些餐馆在口味或服务上得到了广泛认可,或者通过推荐系统推荐符合用户口味的鲁菜美食。
最终,所有分析和模型训练的结果都将被整理并通过Echarts技术以可视化的形式呈现给用户。这不仅使用户能够直观地看到分析结果和各种数据指标,还能通过交互式图表深入探索数据背后的细节。通过这样的完整流程,用户能够从数据采集到处理再到最终反馈的每一步都获得清晰的认识和有用的信息,实现了数据分析的高效应用
在这里插入图片描述

2.2 数据源地址

在这里插入图片描述

2.3 爬虫列表

在这里插入图片描述

三、部分功能展示

☀️登录☀️
在这里插入图片描述

☀️首页展示☀️
在这里插入图片描述

☀️餐馆数据管理展示☀️
在这里插入图片描述

:sunn:餐馆评论数据展示☀️
在这里插入图片描述

☀️词云☀️
在这里插入图片描述

☀️情感分析☀️
在这里插入图片描述

☀️可视化☀️
在这里插入图片描述
☀️可视化☀️
在这里插入图片描述

☀️可视化☀️
在这里插入图片描述

☀️满意度分析 基于评分 环境评分和口味评分计算的满意度 通过k-means算法☀️
在这里插入图片描述

四、部分代码设计

4.1.登录【代码如下(示例):】

#后台管理登录处理
@csrf_exempt
def loginSubmit(request):
    if request.method == 'POST':
        username = request.POST.get('username')
        password = request.POST.get('password')
        user = authenticate(request, username=username, password=password)
        if user is not None:
            login(request, user)
            request.session['username'] = username
            return JsonResponse({'status': 'success', "user": user.username})  # 返回用户名供参考
        else:
            return JsonResponse({'status': 'error', 'message': 'Invalid credentials'})

    return JsonResponse({'status': 'error', 'message': 'System error'}, status=405)

4.2. 时间序列【代码如下(示例):】

# 评论时间 (时间序列图)
    current_year = datetime.now().year
    date_data = list(
        comments.filter(date__year=current_year)
            .values('date__month')
            .annotate(comment_count=Count('id'))
            .order_by('date__month')
    )

    # 转换日期格式为字符串
    for entry in date_data:
        entry['date'] = f'{current_year}-{entry["date__month"]:02d}'

4.3.统计每个评分等级的数量【代码如下(示例):】

# 统计每个评分等级的数量 (花式饼图)
    score_distribution_data = list(restaurants.values('avgScore').annotate(count=Count('avgScore')))

总结

源码获取:

大家点赞、收藏、关注、评论啦 、

打卡 文章 更新 116/ 365天

精彩专栏推荐订阅:在 下方专栏👇🏻👇🏻👇🏻👇🏻

Java精彩实战项目案例

Java精彩新手项目案例

Python精彩新手项目案例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

疯狂行者

你的鼓励将是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值