文本到图像生成:LDGen: Enhancing Text-to-Image Synthesis via Large Language Model-Driven Language Representa

论文作者:Pengzhi Li,Pengfei Yu,Zide Liu,Wei He,Xuhao Pan,Xudong Rao,Tao Wei,Wei Chen

作者单位:Li Auto Inc.

论文链接:http://arxiv.org/abs/2502.18302v1

项目链接:https://zrealli.github.io/LDGen

内容简介:

1)方向:文本到图像生成

2)应用:文本到图像生成

3)背景:传统的文本编码器(如CLIP和T5)在多语言处理方面存在局限性,导致它们在不同语言之间的图像生成能力受到限制。为了克服这些挑战,本文提出利用大型语言模型(LLMs)的先进能力来提升多语言图像生成性能。

4)方法:本文提出了LDGen方法,该方法采用分层字幕优化和人类指令技术来精确提取语义信息,并结合轻量级适配器和跨模态精炼器,以实现LLMs与图像特征之间的高效对齐和交互。通过这一策略,LDGen能够减少训练时间,并实现零-shot的多语言图像生成。

5)结果:实验结果表明,LDGen在遵循提示和图像美学质量方面均超过了基线模型,同时无缝支持多种语言的图像生成。项目:https://zrealli.github.io/LDGen

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Qing_er爱吃山竹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值