图像去雨Cross Paradigm Representation and Alignment Transformer for Image Deraining

论文作者:Shun Zou,Yi Zou,Juncheng Li,Guangwei Gao,Guojun Qi

作者单位:Soochow University;Xiangtan University;Shanghai University;Nanjing University of Posts and Telecommunications & Soochow University;Westlake University

论文链接:http://arxiv.org/abs/2504.16455v1

项目链接:https://github.com/zs1314/CPRAformer

内容简介:

1)方向:图像去雨

2)应用:图像去雨

3)背景:尽管基于Transformer的网络在低级视觉任务中(如图像去雨)已取得显著成果,现有方法在面对不规则雨迹和复杂几何重叠时仍然面临挑战。单一范式架构难以有效整合全局-局部和空间-通道信息,因此需要一个统一的框架来克服这些困难。

4)方法:为了解决这一问题,本文提出了CPRAformer,其核心思想是通过层次化表示和对齐,结合空间-通道和全局-局部两个范式的优势,促进图像的有效重建。具体方法包括:在Transformer模块中使用两种自注意力机制:稀疏提示通道自注意力(SPC-SA),增强全局通道依赖性,通过动态稀疏化来提升效果;空间像素精细化自注意力(SPR-SA),聚焦于空间雨迹分布和精细纹理恢复;引入自适应对齐频率模块(AAFM),通过两阶段渐进方式对特征进行对齐和交互,解决特征对齐和知识差异问题,实现自适应引导和互补。

5)结果:大量实验表明,所提出的CPRAformer在八个基准数据集上达到了最先进的性能,并进一步验证了其在其他图像恢复任务及下游应用中的鲁棒性,展示了其在跨范式动态交互框架中的优势。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Qing_er爱吃山竹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值