这篇论文是一篇针对图像异常检测领域的研究,提出了一种基于混合扩散模型的创新方法,旨在解决现有方法中生成与判别任务分离导致的检测效果受限问题。
-
研究主题:图像异常检测(工业场景为主),专注于生成与判别任务的协同优化。
-
核心问题:现有方法因生成异常样本与检测异常区域的任务分离,导致异常模式覆盖不足、检测精度受限。
-
解决方案:提出混合扩散模型(三个模块:DAGM、DDM、POM),通过联合优化生成与判别过程,提升异常样本的多样性和检测的准确性。
论文的核心技术是**扩散模型(Diffusion Model)**的创新应用,结合以下三个模块:
-
扩散异常生成模块(DAGM)
-
功能:生成逼真且多样化的异常样本,覆盖复杂多变的异常模式(如纹理缺陷、结构破损等)。
-
技术细节:基于扩散模型的生成能力,通过逐步加噪和去噪过程合成异常图像,增强训练数据的代表性。
-
-
扩散判别模块(DDM)
-
功能:通过反向扩散过程分析生成样本与正常样本的差异,定位异常区域。
-
技术细节:利用扩散模型的条件概率分布建模能力,计算像素级异常概率,实现高精度定位。
-
-
概率优化模块(POM)
-
功能:动态优化生成与判别阶段的概率分布,确保生成样本的高质量和判别过程的有效性。
-
技术细节:通过概率重加权或分布校准策略,协调生成与判别任务的训练目标,避免两者冲突。
-
通过混合扩散模型的创新设计,解决了图像异常检测中生成与判别任务难以协调的痛点,在理论与应用层面均具有重要价值。其技术核心在于扩散模型的灵活运用,为复杂工业场景下的高精度检测提供了可靠解决方案。
论文作者:Zekang Weng,Jinjin Shi,Jinwei Wang,Zeming Han
作者单位:福建理工大学;sina
论文链接:http://arxiv.org/abs/2502.19200v1
内容简介:
1)方向:图像异常检测
2)应用:图像异常检测
3)背景:现有的图像异常检测方法常面临复杂且多变的异常模式问题,尤其是生成和判别任务之间的分离限制了异常样本生成与区域检测的有效协调,导致检测效果受限。
4)方法:本文提出一个由三个关键模块组成的混合扩散模型:扩散异常生成模块(DAGM)、扩散判别模块(DDM)和概率优化模块(POM)。DAGM生成逼真且多样的异常样本,提升样本的代表性;DDM通过反向扩散过程捕捉生成样本与正常样本的差异,基于概率分布实现精确的异常区域检测与定位;POM在生成和判别阶段优化概率分布,确保高质量样本用于训练。
5)结果:在多个工业图像数据集上的广泛实验表明,所提方法在图像级和像素级异常检测性能上均显著优于现有的最先进方法,AUROC评分显著提高,证明了方法的有效性。