论文作者:Zhihua Shen,Siyang Chen,Han Wang,Tongsu Zhang,Xiaohu Zhang,Xiangpeng Xu,Xia Yang
作者单位:Sun Yat-sen University
论文链接:http://arxiv.org/abs/2503.02220v1
项目链接:https://github.com/ZhihuaShen/LVNet
内容简介:
1)方向:红外小目标检测(IRSTD)
2)应用:红外小目标检测(IRSTD)
3)背景:传统的Vision Transformers中的标准线性补丁嵌入方法不足以捕捉红外小目标的尺度敏感局部特征,这限制了其在多帧红外小目标检测中的表现。
4)方法:为了克服这一限制,本文提出了LVNet架构。LVNet采用了多尺度卷积神经网络(CNN)前端,以显式地建模局部特征,并通过卷积的局部空间偏置来增强特征学习。此外,LVNet还设计了一个U形视频Transformer,用于多帧时空上下文建模,从而有效捕捉目标的运动特征。
5)结果:实验结果表明,LVNet在公开数据集IRDST和NUDT-MIRSDT上的表现超越了现有的最先进方法。与当前表现最好的方法LMAFormer相比,LVNet在nIoU上提高了5.63% / 18.36%,同时使用的参数仅为LMAFormer的1/221,计算成本仅为1/92 / 1/21。消融实验进一步验证了低级特征学习在混合架构中的重要性。代码:https://github.com/ZhihuaShen/LVNet