多帧红外小目标检测(IRSTD)Low-Level Matters: An Efficient Hybrid Architecture for Robust Multi-frame Infrared

论文作者:Zhihua Shen,Siyang Chen,Han Wang,Tongsu Zhang,Xiaohu Zhang,Xiangpeng Xu,Xia Yang

作者单位:Sun Yat-sen University

论文链接:http://arxiv.org/abs/2503.02220v1

项目链接:https://github.com/ZhihuaShen/LVNet

内容简介:

1)方向:红外小目标检测(IRSTD)

2)应用:红外小目标检测(IRSTD)

3)背景:传统的Vision Transformers中的标准线性补丁嵌入方法不足以捕捉红外小目标的尺度敏感局部特征,这限制了其在多帧红外小目标检测中的表现。

4)方法:为了克服这一限制,本文提出了LVNet架构。LVNet采用了多尺度卷积神经网络(CNN)前端,以显式地建模局部特征,并通过卷积的局部空间偏置来增强特征学习。此外,LVNet还设计了一个U形视频Transformer,用于多帧时空上下文建模,从而有效捕捉目标的运动特征。

5)结果:实验结果表明,LVNet在公开数据集IRDST和NUDT-MIRSDT上的表现超越了现有的最先进方法。与当前表现最好的方法LMAFormer相比,LVNet在nIoU上提高了5.63% / 18.36%,同时使用的参数仅为LMAFormer的1/221,计算成本仅为1/92 / 1/21。消融实验进一步验证了低级特征学习在混合架构中的重要性。代码:https://github.com/ZhihuaShen/LVNet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Qing_er爱吃山竹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值