自监督单目深度估计(SSMDE)Intrinsic Image Decomposition for Robust Self-supervised Monocular Depth Estimation

论文作者:Wonhyeok Choi,Kyumin Hwang,Minwoo Choi,Kiljoon Han,Wonjoon Choi,Mingyu Shin,Sunghoon Im

作者单位:Daegu Gyeongbuk Institute of Science and Technology

论文链接:http://arxiv.org/abs/2503.22209v1

内容简介:

1)方向:自监督单目深度估计(SSMDE)

2)应用:自监督单目深度估计(SSMDE)

3)背景:自监督单目深度估计(SSMDE)因其无需真实深度图的优势,在深度学习领域受到关注。传统的光度一致性损失方法依赖于朗伯反射模型,但在处理反射表面时,常常出现较大误差,限制了其应用效果。

4)方法:为了解决传统方法的局限性,提出了一种新的框架,结合了内在图像分解与自监督单目深度估计。具体方法包括:(i)同时训练单目深度估计和内在图像分解,准确的深度估计通过对齐不同视角坐标系,促进了内在图像分解中的多图像一致性;(ii)分解过程识别反射区域,并排除对深度训练有干扰的梯度;(iii)引入伪深度生成和知识蒸馏技术,进一步提高学生模型在反射和非反射表面上的性能。

5)结果:在多个数据集上的全面评估表明,提出的方法在深度预测上显著优于现有的SSMDE基线,尤其在处理反射表面时,表现出更优的深度估计精度。

<think>好的,我现在需要帮助用户找到关于单目深度估计在MATLAB中的实现方法或教程。用户明确提到了示例代码和教程,所以我的回答需要涵盖这些方面。 首先,我应该回忆一下用户提供的引用内容。引用[3]提到了使用MATLAB进行单目视觉测程,基于KITTI数据集,并且有关于本质矩阵的计算。这可能与深度估计有关联,因为本质矩阵涉及相机的运动估计,而运动估计可以用来恢复深度。引用[2]讨论了双目相机的三维重建,提到了视差图和triangulate函数,不过这是双目的,但或许其中的某些步骤可以借鉴到单目方法中。引用[4]展示了估计的深度图,可能涉及深度学习模型,但用户提供的引用中没有具体的方法说明。 接下来,我需要考虑单目深度估计的常用方法。传统方法可能包括基于运动的结构恢复(SFM),比如使用特征匹配和相机运动来推算深度。而深度学习方法则是利用神经网络直接从单张图像预测深度图。这两种方法在MATLAB中都有实现的可能。 对于传统方法,引用[3]中的代码示例关于估计相机运动,可能可以结合多帧图像进行深度估计。例如,通过特征点匹配计算本质矩阵,分解得到相机的旋转和平移,然后利用三角测量得到深度。MATLAB的Computer Vision Toolbox可能提供相关函数,如estimateEssentialMatrix、relativeCameraPose,以及triangulate函数,如引用[2]中提到的。 对于深度学习方法,需要用到预训练模型或自己训练模型。用户可能需要使用Deep Learning Toolbox,结合已有的网络结构(如MonodepthDepth Prediction CNN)。引用[4]中的结果图可能来自训练好的模型,但用户提供的引用中没有具体说明如何训练。可能需要引导用户参考MATLAB的示例或文档,或者使用Transfer Learning从现有模型开始。 然后,我需要整理实现步骤。传统方法步骤可能包括:读取图像序列、特征提取与匹配、运动估计、三角测量生成深度。深度学习方法步骤可能包括:准备数据集、选择或构建网络、训练模型、测试并可视化深度图。 接下来,代码示例部分需要提供具体的MATLAB代码片段。例如,传统方法可以展示如何匹配特征点,估计相机姿态,并三角测量。对于深度学习方法,可以展示如何使用预训练网络进行预测,但如果没有现成的模型,可能需要指导用户如何加载模型或训练自己的模型。 教程资源方面,MATLAB官方文档和示例是主要来源。需要检查是否有相关的示例,比如单目深度估计、SFM、SLAM等。另外,KITTI数据集是常用的,用户可能需要下载该数据集并按照示例处理。 可能的相关问题包括如何提高深度估计的精度,如何处理动态场景,以及实时性优化的方法。这些问题可以帮助用户进一步探索。 需要确保回答的结构清晰,分传统方法和深度学习方法,每部分有步骤说明和代码示例,并列出教程资源。同时,引用相关的引用内容,如引用[3]中的相机运动估计代码,引用[2]中的三角测量函数,引用[4]中的深度图结果。 最后,验证代码的正确性,确保使用的函数确实存在于MATLAB的工具箱中,比如Computer Vision Toolbox和Deep Learning Toolbox的函数是否存在,避免提供错误的函数名。例如,triangulate函数在MATLAB中是否存在,或者是否有其他类似函数,如triangulateMultiview。需要确认这些细节,确保回答的准确性。</think>### 单目深度估计的 MATLAB 实现方法 单目深度估计可通过传统几何方法(如运动恢复结构)或深度学习方法实现。以下是两种实现路径的详细说明和示例代码: --- #### **一、传统几何方法:基于运动恢复结构 (SFM)** 通过分析连续帧间的相机运动关系实现深度估计,核心步骤包括特征点匹配、本质矩阵估计和三角测量[^3]。 **实现步骤**: 1. **读取图像序列并提取特征点** ```matlab % 读取连续两帧图像 I1 = imread('frame1.jpg'); I2 = imread('frame2.jpg'); % 提取ORB特征点 points1 = detectORBFeatures(rgb2gray(I1)); points2 = detectORBFeatures(rgb2gray(I2)); % 特征描述与匹配 [features1, validPoints1] = extractFeatures(rgb2gray(I1), points1); [features2, validPoints2] = extractFeatures(rgb2gray(I2), points2); indexPairs = matchFeatures(features1, features2); matchedPoints1 = validPoints1(indexPairs(:,1)); matchedPoints2 = validPoints2(indexPairs(:,2)); ``` 2. **估计本质矩阵与相机运动** ```matlab % 假设相机内参已知(需提前标定) cameraParams = cameraParameters('IntrinsicMatrix', K); % K为内参矩阵 % 估计本质矩阵和相机姿态 [E, inliers] = estimateEssentialMatrix(matchedPoints1, matchedPoints2, cameraParams); [R, t] = relativeCameraPose(E, cameraParams, matchedPoints1(inliers,:), matchedPoints2(inliers,:)); ``` 3. **三角测量生成深度** ```matlab % 构造相机投影矩阵 P1 = cameraMatrix(cameraParams, eye(3), [0 0 0]); P2 = cameraMatrix(cameraParams, R, t); % 三角测量得到三维点 worldPoints = triangulate(matchedPoints1(inliers,:), matchedPoints2(inliers,:), P1, P2); % 可视化深度(Z坐标) depths = worldPoints(:,3); histogram(depths); title('深度分布'); ``` --- #### **二、深度学习方法:基于预训练模型** 使用深度学习模型(如MonodepthDepth Prediction CNN)直接从单张图像预测深度图。 **实现步骤**: 1. **加载预训练模型** ```matlab % 从MATLAB Add-On Explorer下载预训练模型 net = monodepth2(); % 示例模型名称,需替换为实际模型 ``` 2. **输入图像并预测深度** ```matlab % 预处理图像 I = imread('test_image.jpg'); inputSize = net.Layers(1).InputSize; I_resized = imresize(I, [inputSize(1), inputSize(2)]); % 预测深度图 depthMap = predict(net, I_resized); % 后处理与可视化 depthMap = rescale(depthMap); % 归一化 imshow(depthMap); colormap jet; colorbar; ``` --- #### **三、教程与资源推荐** 1. **官方文档** - [单目相机标定(Camera Calibrator App)](https://www.mathworks.com/help/vision/camera-calibration.html)[^1] - [运动恢复结构(Structure from Motion)示例](https://www.mathworks.com/help/vision/examples/structure-from-motion-from-multiple-views.html) 2. **代码示例库** - GitHub搜索关键词:`monocular depth estimation MATLAB` - MATLAB File Exchange:[Depth Estimation from Single Image](https://www.mathworks.com/matlabcentral/fileexchange/) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Qing_er爱吃山竹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值