论文作者:Wonhyeok Choi,Kyumin Hwang,Minwoo Choi,Kiljoon Han,Wonjoon Choi,Mingyu Shin,Sunghoon Im
作者单位:Daegu Gyeongbuk Institute of Science and Technology
论文链接:http://arxiv.org/abs/2503.22209v1
内容简介:
1)方向:自监督单目深度估计(SSMDE)
2)应用:自监督单目深度估计(SSMDE)
3)背景:自监督单目深度估计(SSMDE)因其无需真实深度图的优势,在深度学习领域受到关注。传统的光度一致性损失方法依赖于朗伯反射模型,但在处理反射表面时,常常出现较大误差,限制了其应用效果。
4)方法:为了解决传统方法的局限性,提出了一种新的框架,结合了内在图像分解与自监督单目深度估计。具体方法包括:(i)同时训练单目深度估计和内在图像分解,准确的深度估计通过对齐不同视角坐标系,促进了内在图像分解中的多图像一致性;(ii)分解过程识别反射区域,并排除对深度训练有干扰的梯度;(iii)引入伪深度生成和知识蒸馏技术,进一步提高学生模型在反射和非反射表面上的性能。
5)结果:在多个数据集上的全面评估表明,提出的方法在深度预测上显著优于现有的SSMDE基线,尤其在处理反射表面时,表现出更优的深度估计精度。