图像质量评估(IQA)Q-Insight: Understanding Image Quality via Visual Reinforcement Learning

论文作者:Weiqi Li,Xuanyu Zhang,Shijie Zhao,Yabin Zhang,Junlin Li,Li Zhang,Jian Zhang

作者单位:Peking University;ByteDance Inc.

论文链接:http://arxiv.org/abs/2503.22679v1

项目链接:https://github.com/lwq20020127/Q-Insight

内容简介:

1)方向:图像质量评估(IQA)

2)应用:图像质量评估(IQA)

3)背景:现有的基于MLLM的图像质量评估方法通常仅能生成缺乏可解释性的数值评分,或严重依赖大规模标注数据进行监督微调(SFT),限制了模型的灵活性和适用性。因此,亟需一种更高效且更具泛化能力的IQAs方法。

4)方法:本文提出了一种基于强化学习的图像质量评估模型 Q-Insight,其核心为群体相对策略优化(GRPO),能够在仅需少量评分和降质标签的情况下实现强大的视觉推理能力。该方法通过精心设计的奖励函数,联合优化评分回归和降质感知任务,从而有效利用两者的互补优势,提高整体评估性能。

5)结果:实验表明,Q-Insight 在评分回归和降质感知任务上显著超越当前最先进的方法,并在零样本情况下表现出强大的比较推理泛化能力。代码:https://github.com/lwq20020127/Q-Insight

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Qing_er爱吃山竹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值