论文作者:Weiqi Li,Xuanyu Zhang,Shijie Zhao,Yabin Zhang,Junlin Li,Li Zhang,Jian Zhang
作者单位:Peking University;ByteDance Inc.
论文链接:http://arxiv.org/abs/2503.22679v1
项目链接:https://github.com/lwq20020127/Q-Insight
内容简介:
1)方向:图像质量评估(IQA)
2)应用:图像质量评估(IQA)
3)背景:现有的基于MLLM的图像质量评估方法通常仅能生成缺乏可解释性的数值评分,或严重依赖大规模标注数据进行监督微调(SFT),限制了模型的灵活性和适用性。因此,亟需一种更高效且更具泛化能力的IQAs方法。
4)方法:本文提出了一种基于强化学习的图像质量评估模型 Q-Insight,其核心为群体相对策略优化(GRPO),能够在仅需少量评分和降质标签的情况下实现强大的视觉推理能力。该方法通过精心设计的奖励函数,联合优化评分回归和降质感知任务,从而有效利用两者的互补优势,提高整体评估性能。
5)结果:实验表明,Q-Insight 在评分回归和降质感知任务上显著超越当前最先进的方法,并在零样本情况下表现出强大的比较推理泛化能力。代码:https://github.com/lwq20020127/Q-Insight