论文作者:Shuxiao Ding,Yutong Yang,Julian Wiederer,Markus Braun,Peizheng Li,Juergen Gall,Bin Yang
作者单位:Mercedes-Benz AG;University of Bonn;University of Stuttgart;University of Tubingen ¨;Lamarr Institute for Machine Learning and Artificial Intelligence
论文链接:http://arxiv.org/abs/2504.03258v1
内容简介:
1)方向:多目标跟踪(MOT)
2)应用:多目标跟踪(MOT)
3)背景:查询去噪已成为DETR-based检测器中标准的训练策略,能够解决收敛速度慢的问题,并且能够增加训练样本的多样性,这对于建模复杂场景尤其在MOT中至关重要。然而,现有方法中,去噪过程仅在单一帧内进行,未能有效利用时序相关信息,且去噪过程中的注意力掩码阻碍了去噪与目标查询之间的信息交换,限制了其在改进自注意力关联上的潜力。
4)方法:为了克服这些问题,提出了TQD-Track方法,该方法引入了时序查询去噪(TQD),使去噪后的查询能够携带时间信息和实例特定的特征表示。研究还在去噪查询中引入了多种噪声类型,模拟了MOT中实际挑战。对于具有显式数据关联模块的追踪范式,如基于检测的追踪或交替检测与关联,TQD方法能够显著提高性能。此外,为了确保追踪和检测查询在推理时的一致交互,还设计了关联掩码。
5)结果:在nuScenes数据集上的大量实验结果表明,通过仅改变训练过程,TQD方法能够一致性地增强不同的追踪方法,尤其是在具有显式关联模块的追踪范式中。