论文作者:Vidya Sudevan,Fakhreddine Zayer,Rizwana Kausar,Sajid Javed,Hamad Karki,Giulia De Masi,Jorge Dias
作者单位:Khalifa University;Sorbonne University
论文链接:http://arxiv.org/abs/2504.11482v1
内容简介:
1)方向:水下图像去雾
2)应用:水下图像去雾
3)背景:由于水下环境中光的散射与吸收会严重影响图像的可视性,因此提高水下图像清晰度成为实现高效海洋视觉操作的关键。传统方法往往在功耗、模型复杂度或图像质量上存在不足,亟需高效、低能耗的新型去雾模型。
4)方法:本文提出了一种基于脉冲神经网络(Spiking Neural Network, SNN)的新型架构——snnTrans-DHZ。snnTrans-DHZ 采用了SNN的时间动态特性来高效处理时间相关的原始图像序列。首先通过多次输入同一静态图像,将其转化为时间依赖的序列,并转换为RGB和LAB颜色空间表示进行并行处理。网络结构包括三个主要模块:(i)K估计器,用于提取多颜色空间下的图像特征;(ii)背景光估计器,联合RGB-LAB图像推断背景光分量;(iii)软图像重建模块,用于生成无雾增强图像。该模型采用代理梯度的时间反向传播算法(BPTT)进行端到端训练,并结合了一种新的复合损失函数。
5)结果:在UIEB数据集上,该模型取得了21.68 dB的PSNR和0.8795的SSIM,在EUVP数据集上分别达到23.46 dB和0.8439,表现优于现有先进去雾方法。同时,snnTrans-DHZ模型仅包含约56.7万参数,计算量为7.42 GSOPs,能耗仅为0.0151焦耳,展现出极高的能效比和应用价值。