【bzoj3926】[Zjoi2015]诸神眷顾的幻想乡

哼要先给那些根本没写清楚还发表的题解差评0.0如果不是clj的题解根本看不懂好嘛0.0
题意求一棵树上本质不同的子串的数量 每个点出度<=20 叶子节点<=20。
从所有的叶子节点开始到根的每条路径的每一个前缀都对应一个子串(公共路径上会重复)
后缀自动机上可以识别全部的后缀 也就是说按照从叶子节点到根的顺序插进去就相当于统计了所有的前缀 于是就想到了后缀自动机~
后缀自动机不同的状态一定对应不同的子串并且整个自动机对应的一定是全部的子串 所以ans+=len[i]-len[fa[i]]就是答案.
其实这个题用到的就是广义自动机 就是对一棵tire树建立一个自动机
跟一般的后缀自动机的区别就是 其实没什么区别 就相当于从每一个叶子节点到根的路径上的点都从parent树根开始插入一遍 这样重复的部分一定会在自动机中合并

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<map>
using namespace std;
const int N=400011;
int head[N],next[N],key[N],tot;
int a[N],du[N];
int last=1,cnt=1;
long long ans=0;
struct node
{
   int a[N*10][15],fa[N*10],len[N*10];
   int insert(int p,int x)
   {
     int np;
     np=last=++cnt;
     len[np]=len[p]+1;
     while(!a[p][x]&&p)a[p][x]=np,p=fa[p];
     if(!p)fa[np]=1;
     else
     {
       int q=a[p][x];
       if(len[p]+1==len[q])fa[np]=q;
       else
       {
         int nq=++cnt;len[nq]=len[p]+1;
         memcpy(a[nq],a[q],sizeof(a[q]));
         fa[nq]=fa[q];
         fa[np]=fa[q]=nq;
         while(a[p][x]==q)a[p][x]=nq,p=fa[p];
       }
     }
     return np;
   }
   void get()
   {
     for(int i=1;i<=cnt;i++)
     ans+=len[i]-len[fa[i]];
   }
}sam;

void add(int x,int y)
{
    tot++;
    next[tot]=head[x];
    head[x]=tot;
    key[tot]=y;
}
void dfs(int x,int fa,int p)
{
    int t=sam.insert(p,a[x]);
    for(int i=head[x];i;i=next[i])
     {
        int y=key[i];
        if(y!=fa)dfs(y,x,t);
     }
}
int main()
{
    int n,c;cin>>n>>c;
    for(int i=1;i<=n;i++)scanf("%d",&a[i]);
    for(int i=1;i<n;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        add(x,y);add(y,x);
        du[x]++,du[y]++;
    }
    for(int i=1;i<=n;i++)
    if(du[i]==1)dfs(i,0,1);
    sam.get();
    printf("%lld\n",ans);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值