【bzoj3124】: [Sdoi2013]直径

这个题做法比较多 我的做法比较锻(傻)炼(比)代(超)码(级)能(麻)力(烦)。。
对于每个点维护mx cmx f g分别表示最长链 次长链和最长链的方案数 次长链的方案数
先dfs一遍把以每个点为根的子树的这些值都维护出来 然后考虑换根之后
这些值该如何维护 漫长的分类讨论..(看代码)
感觉代码或许有bug 但是这题数据太水了 过了样例1A了。。如果发现哪里不对欢迎指正!

标解的做法呢就是根据直径的性质 发现满足答案的边一定是一条不分叉的连续路径。。显然只要产生分叉就说明这一段可以被替代。。然后随便写写了~

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
const int inf=0x3f3f3f3f;
const int N=200011;
int head[N],next[N*2],key[N*2],w[N*2],tot;
long long mx[N],cmx[N],dist[N],vis[N],f[N],g[N];
long long d,ans,gs;
int out[N];

void add(int x,int y,int z)
{
    tot++;
    next[tot]=head[x];
    head[x]=tot;
    key[tot]=y;
    w[tot]=z;
}
void dfs(int x,int fa)//求出直径 
{
    for(int i=head[x];i;i=next[i])
    {
        int y=key[i];
        if(y!=fa)
        {
            dfs(y,x);
            if(mx[x]<=mx[y]+w[i])cmx[x]=mx[x],mx[x]=mx[y]+w[i];
            else if(cmx[x]<mx[y]+w[i])cmx[x]=mx[y]+w[i];
        }
    }
    for(int i=head[x];i;i=next[i])
    {
       int y=key[i];
       if(y!=fa&&mx[x]==mx[y]+w[i])f[x]+=f[y];
       if(y!=fa&&cmx[x]==mx[y]+w[i])g[x]+=f[y];
    }
    d=max(cmx[x]+mx[x],d);
}
void slove(int x)
{
    vis[x]=1;
    for(int i=head[x];i;i=next[i])
    {
        int y=key[i];
        if(vis[y]==0)
        {
            if(mx[y]+w[i]==mx[x])//最长链在这颗子树
             if(mx[y]+w[i]+cmx[x]==d&&g[x]*f[y]==gs)ans++;
            //最长链不在这棵子树 
             if(mx[y]+w[i]+mx[x]==d&&f[y]*f[x]==gs)ans++;
        }
    }
    for(int i=head[x];i;i=next[i])
    {
        int y=key[i];
        if(vis[y]==0)
         {
            if(mx[y]+w[i]==mx[x])//最长链在这棵子树 此时次长连一定不在这棵子树 
            {
               if(mx[y]<cmx[x]+w[i])
               {
                 mx[y]=cmx[x]+w[i];
                 f[y]=g[x];
               }
               else if(mx[y]==cmx[x]+w[i])f[y]+=g[x];
               else if(mx[y]>cmx[x]+w[i])
               {
                 if(cmx[y]<cmx[x]+w[i])
                 {
                     cmx[y]=cmx[x]+w[i];
                     g[y]=g[x];
                 }
                 else if(cmx[y]==cmx[x]+w[i])g[y]+=g[x];
               }
            }
            else
            { 
               cmx[y]=mx[y];g[y]=f[y];
               mx[y]=mx[x]+w[i];f[y]=f[x];
            }
            slove(y);
         }
    }
}
int main()
{
    int n;cin>>n;
    for(int i=1;i<n;i++)
    {
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        add(x,y,z);
        add(y,x,z);
        out[x]++;
        out[y]++;
    }
    for(int i=1;i<=n;i++)
    if(out[i]==1)f[i]=1;
    dfs(1,-1);
    for(int i=1;i<=n;i++)
    if(mx[i]==cmx[i]&&mx[i])g[i]--;
    for(int i=1;i<=n;i++)if(mx[i]+cmx[i]==d)gs+=f[i]*g[i];
    slove(1);
    printf("%lld\n%lld\n",d,ans);

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值