构造Gray码(格雷码)

1. Gray码介绍

Gray码是一个长度为2N的序列,序列中无相同元素,每个元素都是长度为N位的(0,1)串,相邻元素恰好只有一位不同。Gray的特点如下图所示:
此图来源于文章:https://blog.csdn.net/hummingbird0/article/details/105100327
此图片来源于以下链接: https://blog.csdn.net/hummingbird0/article/details/105100327.

2.构造方法

设n位Gray码的序列为 G ( n ) G(n) G(n),其倒序列为 G − 1 ( n ) G^{-1}(n) G1(n),例如 G ( 2 ) = { 00 , 01 , 11 , 10 } G(2)= \left\{ 00,01,11,10\right\} G(2)={00,01,11,10},则 G − 1 ( 2 ) = { 10 , 11 , 01 , 00 } G^{-1}(2)= \left\{ 10,11,01,00\right\} G1(2)={10,11,01,00};从上图中不难发现以下规律: G ( n ) = 0 G ( n − 1 ) + 1 G − 1 ( n − 1 ) G(n)=0G(n-1)+1G^{-1}(n-1) G(n)=0G(n1)+1G1(n1)
从而实现 G ( n − 1 ) G(n-1) G(n1) G ( n ) G(n) G(n)的转化,而初始边界条件 G ( 1 ) = { 0 , 1 } G(1)= \left\{ 0,1\right\} G(1)={0,1}已知。所以,构造Gray码的代码如下:

#include <iostream>
using namespace std;

//构造Gray码 特点是当n大于20后特别占内存
int Gray(int n)
{
    if (n < 1) return -1;  //输入检测
    string* gray = new string[pow(2, n)]; //用字符串数组存储Gray码
    int x = 0;
    gray[0] = "0"; //边界条件
    gray[1] = "1";
    for (int i = 2; i <= n; i++) {
    x = pow(2, i); //Gray码的规模
    for (int m = pow(2, i - 1); m <= (pow(2, i) - 1); m++)
          gray[m] = "1" + gray[x - m - 1]; 
    for (int j = 0; j <= (pow(2, i-1) - 1); j++)
          gray[j] = "0" + gray[j];      
    }
    for (int i = 0; i < pow(2, n); i++) {
        cout << gray[i] << " ";
    }
    //delete gray;//????????????????为什么此处会报错
    return 0;
}

int main()
{
    int n;
    cout << "请输入一个正整数: ";
    cin >> n;
    Gray(n);
    return 0;
}

此代码用一个字符串数组来存储2n规模的Gray码,显然空间复杂度为O(2n),因此当n比较大的时候特别占内存,呈指数级增长,例如n=25时,就可占4.5GB的内存,当n=29时,会占22GB的运行内存。若有解决此弊端的方法感谢留言告之。
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值