题目描述
V先生有一天工作到很晚,回家的时候要穿过一条长l的笔直的街道,这条街道上有n个路灯。假设这条街起点为0,终点为l,第i个路灯坐标为ai。路灯发光能力以正数d来衡量,其中d表示路灯能够照亮的街道上的点与路灯的最远距离,所有路灯发光能力相同。为了让V先生看清回家的路,路灯必须照亮整条街道,又为了节省电力希望找到最小的d是多少?
输入:输入两行数据,第一行是两个整数:路灯数目n (1≤n≤1000),街道长度l (1 ≤l≤109)。第二行有n个整数ai (0 ≤ ai≤ l),表示路灯坐标,多个路灯可以在同一个点,也可以安放在终点位置。
输出:输出能够照亮整个街道的最小d,保留两位小数。
样例输入
7 15
15 5 3 7 9 14 0
样例输出
2.50
思路解析:这道题的思路很简单,就是找出相邻两个路灯之间距离的最大值maxDistance,求(maxDistance/2)即可。但这就完了吗?这道题有个容易忽略的坑,路的端点(左端点或右端点)和最近的路灯之间的距离ends如果比(maxDistance/2)大,那么d=ends,否则d=maxDistance/2。从这道题可以看出,一道题的边界条件往往非常特殊!下面来看看代码:
import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int lightNum = scanner.nextInt(); // 路灯数
int distance = scanner.nextInt(); // 路的长度
int[] position = new int[lightNum];// 输入的路灯的位置
for (int i = 0; i < lightNum; i++)
position[i] = scanner.nextInt();
Arrays.sort(position); // 排序算法
int maxDistance = 0; // 相邻的两个路灯距离的最大值
for (int i = 0; i < lightNum - 1; i++) {
int temp = position[i + 1] - position[i];
maxDistance = maxDistance < temp ? temp : maxDistance;
}
double d = maxDistance / 2.0;
int start = position[0];
int end = distance - position[lightNum - 1];
int ends = start > end ? start : end;
if (ends > d)
d = ends;
System.out.printf("%.2f", d); // 格式输出
}
}
上面用了Arrays.sort(int[] array)方法,这个方法用于对数组进行排序。还有另一个排序的方法Collections.sort(List<T> list),这个方法是用来对List类型进行排序的。
格式输出System.out.printf("%.2f", d)这个方法可以参考以下这篇文章,非常完整!
https://blog.csdn.net/quhongjuan12/article/details/79781101