题目描述
V先生有一天工作到很晚,回家的时候要穿过一条长l的笔直的街道,这条街道上有n个路灯。假设这条街起点为0,终点为l,第i个路灯坐标为ai。路灯发光能力以正数d来衡量,其中d表示路灯能够照亮的街道上的点与路灯的最远距离,所有路灯发光能力相同。为了让V先生看清回家的路,路灯必须照亮整条街道,又为了节省电力希望找到最小的d是多少?
输入
输入两行数据,第一行是两个整数:路灯数目n (1≤n≤1000),街道长度l (1 ≤l≤109)。第二行有n个整数ai (0 ≤ ai≤ l),表示路灯坐标,多个路灯可以在同一个点,也可以安放在终点位置。
输出
输出能够照亮整个街道的最小d,保留两位小数。
样例输入
7 15
15 5 3 7 9 14 0
样例输出
2.50
解题思路:昨天刚看到这个题目的时候,以为要用最短路径来做,但今天仔细看了看题目,还是挺简单的。首先对数组进行排序,然后找出两点之间最长的距离,排完序后,其实已经做完了一半。接下来,就需要考虑几种情况了。第一种就是只有一个节点,第二种就是有n(n>=2)个节点。这两种情况,都需要做的工作就是与开始位置和终点位置的长度比较。还有注意的地方就是,如果开始和终点没有路灯,此时的长度不需要除2;如果有的话,长度需要除2,得到的是一个半径。
代码:
import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int l = sc.nextInt();
int[] arr = new int[n];
for (int i = 0;i<n;i++){
arr[i] = sc.nextInt();
}
Arrays.sort(arr);
if(n == 1){
int len = (arr[0])>(l-arr[0])?(arr[0]):(l-arr[0]);
System.out.printf("%.2f",len*1.0);
}else{
int len = arr[1] - arr[0];
for(int i=2;i<n;i++){
if(len<arr[i]-arr[i-1])
len = arr[i] -arr[i-1];
}
boolean flag = true;
if(arr[0]!=0&&len/2<arr[0]) {
len = arr[0];
flag = false;
}
if(arr[n-1]!=l&&len/2<l-arr[n-1]) {
len = l - arr[n - 1];
flag = false;
}
if (flag == true){
System.out.printf("%.2f",len/2.0);
}else{
System.out.printf("%.2f",len*1.0);
}
}
}
}