一、摘要
在此次实验中,笔者针对 MNIST 数据集,利用卷积神经网络进行训练与测试,提
出了一系列的改进方法,并对这些改进的方法进行了逐一验证,比较了改进方法与浅层
神经网络的优劣。
首先,笔者对实验中所用的 MNIST
数据集进行了简单的介绍;接着,介绍了数据
处理的方法,实验中采用的数据处理方法主要为将图片对应的像素矩阵进行归一化;然
后,利用单隐藏层卷积神经网络模型进行了训练与测试,并进一步引入
ROI
机制对输入
图像的尺寸进行调整,加快了训练速度;最后,笔者又基于动量算法、小批量算法以及
双隐藏层神经网络模型提出了改进方法,并进行了模型的训练与对比测试。
在进入正文之前,先对模型训练与测试的基本思路进行讲解,在后续的改进实验中,
也是基于该框架进行调整。图
1
为使用
SGD
算法训练网络的流程图。笔者先从官网上下
载了
MNIST
数据集,接着对训练集、测试集中的图片进行标签,为了方便网络训练,需
要对图片进行归一化处理。然后,就进入网络结构的设计,先考虑单隐藏层神经网络结
构,笔者在特征提取网络中设计了一层卷积层和一层池化层,在分类网络中也只使用一
层隐藏层。最后,训练网络之后对测试集上分类错误的图片进行记录保存。

二、数据集介绍
MNIST 数据集是手写数字图像集,MNIST 是机器学习领域最有名的数据集之一,
被应用于从简单的实验到发表研究论文等各种场合。
MNIST
数据集是由
0
到
9
的数字
图像构成,训练图像有
6
万张,测试图像有
1
万张,这些图像可以用于学习和推理。
MNIST
数据集标准与技术研究所
, National Institute of Standards and Technology (NIST)
。
训练集
(training set)
由来自
250
个不同人手写的数字构成
,
其中
50%
是高中学生
, 50%
来
自人口普查局
(the Census Bureau)
的工作人员。测试集
(test set)
也是同样比例的手写数
字数据。
MNIST 数据集的一般使用方法是,先用训练图像进行学习,再用学习到的模型对
测试图像进行正确的分类。
三、数据预处理
在进行训练之前,需要对图像进行简单处理,采取的方法为将图片数据进行归一化。
在
MATLAB
中,读取的每一张图片都会以灰度值矩阵的形式存在,在本次训练中,输入
图像的大小是
28*28
的,那么每张图片就对应
784
个灰度值,每个灰度值都介于
0-255
之间。需要将这些值调整到
[0,1]
之间,具体的操作是直接除以
255
。但为了进一步提高
模型的泛化能力和训练速度,再对归一化的数值进行四舍五入操作,这样一来,每个图
片的数据就只储存在
0
和
1
之中。数据归一化的好处如下:
(
1
)
加速训练:
神经网络的训练通常依赖于梯度下降等优化算法,这些算法对输入
数据的范围和分布敏感。通过将数据归一化到一个较小的范围(通常是
[0, 1]
或
[-1, 1]
),
可以提高训练的稳定性和收敛速度。这有助于避免梯度消失或爆炸等训练中的问题。
(
2
)
梯度下降的收敛性:
归一化有助于确保不同特征的权重更新在相似的尺度上,
使训练更容易收敛。如果特征具有不同的尺度,可能需要更小的学习率来训练模型,或
者可能需要更多的训练时间。
(
3
)
防止模型过拟合:
归一化可以帮助模型更好地泛化到新的数据。过大的输入值
范围可能导致模型过拟合,因为模型可能过于依赖特定训练数据的细节。
(
4
)
让模型更易于调试:
在归一化后,输入数据的分布更容易可视化和理解,因此
在调试和分析模型时更加方便。
四、网络介绍
图
4
所示为基于但隐藏层卷积神经网络的手写体数字识别模型,网络总共可以分为
特征提取网络和分类网络两部分。在特征提取网络中,主要由一层卷积层和一层池化层
组成。在卷积层中,使用
ReLU
激活函数处理卷积之后得到的矩阵。在分类网络中,由
一层输入层、一层隐藏层以及一层输出层组成。输入层由
2000
个节点组成;隐藏层由
100
个节点组成,使用的激活函数为
ReLU
激活函数;输出层由
10
个节点组成,对应手
写体数字的
10
个类别,使用的激活函数为
Softmax
激活函数。

五、相关代码
%sigmoid函数
function r = sigmoid(x)
r = 1 ./ (1 + exp(-x));
end
function r = softmax(x)
S = sum(exp(x));
r = zeros(length(x), 1);
for i = 1:length(x)
r(i) = exp(x(i)) / S;
end
end
% 反向传播代码
function [W1, W2, W3, error, accuracy] = BP(W1, W2, W3, alpha, D, imageData, accuracy)
%卷积
img_conv1 = zeros(20, 20, 20);
for k = 1:20
img_conv1(:, :, k) = filter2(W1(:, :, k), imageData, 'valid');
end
%ReLU激活
img_act = max(0, img_conv1);
%池化
img_pool = (img_act(1:2:end, 1:2:end, :) + img_act(2:2:end, 2:2:end, :) +
img_act(1:2:end, 2:2:end, :) +img_act(2:2:end, 1:2:end, :)) / 4;
%将img_pool转换成列向量(2000*1)
img_input = reshape(img_pool, [], 1);
%第一个隐层的输出
v1 = W2 * img_input;
y1 = max(0, v1);
%输出层的输出
v2 = W3 * y1;
y2 = softmax(v2);
%观察模型是否训练准确
[value1, index1] = max(y2);
[value2, index2] = max(D);
if index1 == index2
accuracy = accuracy + 1;
end
% 计算交叉熵函数
error = sum(- D .* log(y2) - (1 - D) .* log(1 - y2)) / 10;
%误差反向传播过程
%计算输出层的delta
e2 = D - y2;
delta2 = e2;
%计算第一层隐藏层的delta1
e1 = W3' * delta2;
delta1= (y1 > 0) .* e1;
%计算输入层(reshape层)的e
e = W2' * delta1;
%将输入层的误差进行reshape,以便于误差进一步反向传播穿过池化层和卷积层
E2 = reshape(e, size(img_pool));
%将池化层的误差传播到卷积层
E1 = zeros(size(img_act));
E2_4 = E2 / 4;
E1(1:2:end, 1:2:end, :) = E2_4;
E1(1:2:end, 2:2:end, :) = E2_4;
E1(2:2:end, 1:2:end, :) = E2_4;
E1(2:2:end, 2:2:end, :) = E2_4;
delta = (img_act > 0) .* E1;
dW1 = zeros(9, 9, 20);
for k = 1:20
dW1(:, :, k) = alpha * (filter2(delta(:, :, k), imageData, 'valid'));
end
%更改权重
W1 = W1 + dW1;
W2 = W2 + alpha * delta1 * img_input';
W3 = W3 + alpha * delta2 * y1';
end
%训练并测试
%第一个卷积层的权重
W1 = randn(9, 9, 20);
%学习率
alpha = 0.001;
%训练集文件夹路径
train_path = 'MNIST_train/';
%第一个隐层的权重
W2 = (2 * rand(100, 2000) - 1) / 20;
%输出层的连接权重
W3 = (2 * rand(10, 100) - 1) / 10;
%设置迭代次数
n = 1;
%初始化样本标签数据(一共有60000张图片,所以需要保存60000个标签数据)
label = zeros(60000, 1);
%先对每个样本进行标记
for i = 0:9
trainfolderpath = strcat(train_path, num2str(i));
% 获取文件夹中的所有图像文件
trainimageFiles = dir(fullfile(trainfolderpath, '*.jpg'));
% 循环读取每个图像
for j = 1:length(trainimageFiles)
% 假设imageFiles(j).name包含文件名
FileName = trainimageFiles(j).name;
% 利用fileparts获得文件名,方便后续辨识每张图片的标签
[~, name_number, ~] = fileparts(FileName);
%通过解析文件名就可以获得图片的序号
number = str2num(name_number);
%给图片打上标签
label(number) = i;
end
end
%开始计时
tic;
%训练网络时用到的文件夹,在该文件夹下将所有类别的图片混合,可以提高训练效果
Path_mix = 'train_mix/';
%每张图片的交叉熵
loss = zeros(60000, 1);
%平均交叉熵
loss_ave = zeros(60000, 1);
%训练集的准确率
acc_train = zeros(60000, 1);
accuracy = 0;
%开始训练,只训练一轮
for epochs = 1:n
folderpath = Path_mix;
%获取文件夹中的所有图像文件
imageFiles = dir(fullfile(folderpath, '*.jpg')); % 可以更改文件扩展名以匹配你的图像格式
% 循环读取每个图像
for j = 1:length(imageFiles)
% 构建完整的文件路径
lab = label(j);
%设置目标输出
D = zeros(10, 1);
D(lab+1) = 1;
%获取要读取的图片的地址
imagePath = strcat(folderpath, num2str(j));
imagePath = strcat(imagePath, '.jpg');
%输出正在处理的图像和训练进度
fprintf('模型训练的进度:%f%%\n', j/600);
s = sprintf('正在训练的图片为:%s', imagePath);
disp(s);
% 使用 imread 读取图像
imageData = imread(imagePath);
%对图像进行归一化操作
imageData = round(imageData / 255);
[W1, W2, W3, error, accuracy] = BP(W1, W2, W3, alpha, D, imageData, accuracy);
acc_train(j) = accuracy / j;
loss(j) = error;
loss_ave(j) = sum(loss(1:j)) / j;
end
end
% 停止计时
elapsedTime = toc;
% 打印执行时间
fprintf('训练时长为:%.4f 秒\n', elapsedTime);
%训练结束的信号
disp('训练结束,正在进行测试...');
%测试集地址
testPath = 'MNIST_test/';
%记录测试集有多少张图片
image_numbers_test = 1;
%测试集上的准确率
acc = 0;
for i = 0:9
%依次遍历MINIST_train(训练集)文件夹下的每一个子文件夹,每一个子文件夹中包含相同的数字
test_path = strcat(testPath, num2str(i));
% 获取文件夹中的所有图像文件
testimageFiles = dir(fullfile(test_path, '*.jpg'));
% 循环读取每个图像
for j = 1:length(testimageFiles)
%测试集中每张图片的路径
imagePath = fullfile(test_path, testimageFiles(j).name);
%读取图像
imageData = imread(imagePath);
%图片归一化操作
imageData = round(imageData / 255);
%卷积
img_conv1 = zeros(20, 20, 20);
for k = 1:20
img_conv1(:, :, k) = filter2(W1(:, :, k), imageData, 'valid');
end
%对卷积得到的图片进行ReLU激活
img_act = max(0, img_conv1);
%平均池化(2*2)
img_pool = (img_act(1:2:end, 1:2:end, :) + img_act(2:2:end, 2:2:end, :) + img_act(1:2:end, 2:2:end, :) +img_act(2:2:end, 1:2:end, :)) / 4;
%将img_pool转换成列向量(2000*1)
img_input = reshape(img_pool, [], 1);
%第一个隐层的输出
v1 = W2 * img_input;
y1 = max(0, v1);
%输出层的输出
v2 = W3 * y1;
y2 = softmax(v2);
[~, index] = max(y2);
%如果分类正确准确率就加1
acc = acc + ((index-1) == i);
image_numbers_test = image_numbers_test + 1;
end
end
%画图观察模型训练效果
subplot(1, 2, 1);
plot(1:60000, loss_ave);
xlabel('训练的图片数');
ylabel('平均损失函数值');
title('平均交叉熵随训练的图片数量的变化');
subplot(1, 2, 2);
plot(1:60000, acc_train);
xlabel('训练的图片数');
ylabel('准确率');
title('准确率随训练的图片数量的变化');
fprintf('测试集的准确率为%f\n', acc/(image_numbers_test-1));