455. 分发饼干
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
题目链接:LeetCode455.分发饼干
文档讲解:代码随想录LeetCode455.分发饼干
题解
小饼干先去满足小胃口
class Solution {
public:
int findContentChildren(vector<int>& g, vector<int>& s) {
sort(g.begin(), g.end());
sort(s.begin(), s.end());
int index = 0;
for (int i = 0; i < s.size(); i++) {
if (index < g.size() && g[index] <= s[i]) {
index++;
}
}
return index;
}
};
- 时间复杂度:O(nlogn)
- 空间复杂度:O(1)
376. 摆动序列
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
-
例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。
-
相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。
题目链接:LeetCode376.摆动序列
文档讲解:代码随想录LeetCode376.摆动序列
题解
统计峰值
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
if (nums.size() <= 1)
return nums.size();
int preDiff = 0;
int curDiff = 0;
int res = 1;
for (int i = 0; i < nums.size() - 1; i++) {
curDiff = nums[i + 1] - nums[i];
if ((preDiff <= 0 && curDiff > 0) ||
(preDiff >= 0 && curDiff < 0)) {
res++;
preDiff = curDiff;
}
}
return res;
}
};
- 时间复杂度:O(n)
- 空间复杂度:O(1)
53. 最大子数组和
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组 是数组中的一个连续部分。
题目链接:LeetCode53.最大子数组和
文档讲解:代码随想录LeetCode53.最大子数组和
题解
依次相加,当累加和为负数时,重置累加和为0,才能为得到子数组和起到“正向作用”
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int result = INT_MIN;
int count = 0;
for (int i = 0; i < nums.size(); i++) {
count += nums[i];
if (count > result)
result = count;
if (count < 0)
count = 0;
}
return result;
}
};
- 时间复杂度:O(n)
- 空间复杂度:O(1)