计算如下立体图形的表面积和体积。
从图中观察,可抽取长方体和四棱锥两种立体图形的共同属性到父类Rect中:长度:l 宽度:h 高度:z。
编程要求:
(1)在父类Rect中,定义求底面周长的方法length( )和底面积的方法area( )。
(2)定义父类Rect的子类立方体类Cubic,计算立方体的表面积和体积。其中表面积area( )重写父类的方法。
(3)定义父类Rect的子类四棱锥类Pyramid,计算四棱锥的表面积和体积。其中表面积area( )重写父类的方法。
(4)在主程序中,输入立体图形的长(l)、宽(h)、高(z)数据,分别输出长方体的表面积、体积、四棱锥的表面积和体积。
提示:
(1)四棱锥体积公式:V=31Sh,S——底面积 h——高
(2)在Java中,利用Math.sqrt(a)方法可以求得a的平方根(方法的参数及返回结果均为double数据类型)
(3)在Python中,利用math模块的sqrt(a)方法,求得a的平方根。
输入格式:
输入多行数值型数据(double);
每行三个数值,分别表示l、h、z,数值之间用空格分隔。
若输入数据中有0或负数,则不表示任何图形,表面积和体积均为0。
输出格式:
行数与输入相对应,数值为长方体表面积 长方体体积 四棱锥表面积 四棱锥体积(中间有一个空格作为间隔,数值保留两位小数)。
输入样例:
1 2 3
0 2 3
-1 2 3
3 4 5
输出样例:
22.00 6.00 11.25 2.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
94.00 60.00 49.04 20.00
代码如下
import java.util.Scanner;
class Rect {
double l; //定义长宽高
double h;
double z;
Rect(double l,double h,double z)
{
this.l=l;
this.h=h;
this.z=z;
if(l<=0||h<=0||z<=0) {
this.l=0;
this.h=0;
this.z=0;
}
}
public Rect() {
}
public double length()
{
return (this.l+this.h)*2;
}
public double area(double x,double y)
{
return x*y;
}
}
class Cubic extends Rect{
Cubic(double l, double h, double z) {
super(l, h, z);
}
public double area()
{
return (super.area(l,h)+super.area(h,z)+super.area(l,z))*2;
}
public double v()
{
return l*h*z;
}
}
class Pyramid extends Rect{
Pyramid(double l, double h, double z) {
super(l, h, z);
}
public double area()
{
return l*h+(h*Math.sqrt((l/2)*(l/2)+z*z))+(l*Math.sqrt((h/2)*(h/2)+z*z));
}
public double v()
{
return l*h*z*1/3;
}
}
public class Main{
public static void main(String[] args) {
Scanner input=new Scanner(System.in);
Rect rect=new Rect();
double l,h,z;
while(input.hasNext()) {
l = input.nextDouble();
h = input.nextDouble();
z = input.nextDouble();
Cubic cu=new Cubic(l,h,z);
Pyramid py=new Pyramid(l,h,z);
System.out.printf("%.2f %.2f %.2f %.2f\n",cu.area(),cu.v(),py.area(),py.v());
}
}
}