算法知识-动态规划(java)实现简单案例

文章介绍了动态规划算法的核心思想,并通过一个01背包问题展示了如何应用动态规划求解。给定一个背包容量和多个物品的体积及价值,目标是找到在不超过背包容量的情况下能获得的最大价值。文章提供了详细的解题思路和Java代码实现,通过初始化dp数组并逐步填充,计算出最大价值。
摘要由CSDN通过智能技术生成

一、算法介绍:

  • 动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法。

  • 动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。

  • 与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。 (
    即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解 )

  • 动态规划可以通过填表的方式来逐步推进,得到最优解.

二、 最佳实践-背包问题:

题目来源于(蓝桥杯)

题目描述 小明有一个容量为 V 的背包。

这天他去商场购物,商场一共有 N 件物品,第 i 件物品的体积为 wi​,价值为 vi​。

小明想知道在购买的物品总体积不超过 V 的情况下所能获得的最大价值为多少,请你帮他算算。

输入描述 输入第 1 行包含两个正整数N,V,表示商场物品的数量和小明的背包容量。

第 2∼N+1 行包含 2 个正整数w,v,表示物品的体积和价值。

1≤N≤102,1≤V≤103,1≤wi​,vi​≤10^3。

输出描述 输出一行整数表示小明所能获得的最大价值。

输入输出样例 示例 1

输入

5 20 1 6 2 5 3 8 5 15 3 3 输出

37

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值