LeetCode 190. 颠倒二进制位 (位运算 分治)

题目

  • 颠倒给定的 32 位无符号整数的二进制位。

提示:

  • 请注意,在某些语言(如 Java)中,没有无符号整数类型。在这种情况下,输入和输出都将被指定为有符号整数类型,并且不应影响您的实现,因为无论整数是有符号的还是无符号的,其内部的二进制表示形式都是相同的。
    在 Java 中,编译器使用二进制补码记法来表示有符号整数。因此,在上面的 示例 2 中,输入表示有符号整数 -3,输出表示有符号整数 -1073741825。

  • 进阶: 如果多次调用这个函数,你将如何优化你的算法?

示例 1:

输入: 00000010100101000001111010011100
输出: 00111001011110000010100101000000
解释: 输入的二进制串 00000010100101000001111010011100 表示无符号整数 43261596,
     因此返回 964176192,其二进制表示形式为 00111001011110000010100101000000。

题解

解法一(位运算)

  • 将 n 视作一个长为 32 的二进制串,从低位(取第一位 n&1 )往高位枚举 n 的每一位,将其倒序添加到翻转结果 rev 中。

  • 代码实现中,每枚举一位就将 n 右移一位( n>>> 1),这样当前 n 的最低位就是我们要枚举的比特位。当 n 为 0 时即可结束循环。

注意: 中,没有无符号整数类型,因此对 n 的右移操作应使用逻辑右移。

算术右移 >> :舍弃最低位,高位用符号位填补;
逻辑右移 >>> :舍弃最低位,高位用 0 填补。

public class Solution {
    public int reverseBits(int n) {
        int rev = 0;
        for (int i = 0; i < 32 && n != 0; ++i) {
            rev |= (n & 1) << (31 - i);
            n >>>= 1;
        }
        return rev;
    }
}

解析:

  • << ( 31 - i) 为向左移,因为是逆序
  • rev | = 为类似于递加

解法二 (回文数)

  • 有点类似于回文数 逆序,将十进制的 乘10以及模改成 2 即可,当然是数不超范围情况下
	public static Boolean hws(long n) {
		long num = 0 ;
		long y = n ;
		
		while(y!=0) {
			num = num*10+y%10 ;
			y/=10;
		}
		
		if(num == n) return true ;
		else return false ;
	}

解法三 (分治法)

  • 若要翻转一个二进制串,可以将其均分成左右两部分,对每部分递归执行翻转操作,然后将左半部分拼在右半部分的后面,即完成了翻转。

  • 由于左右两部分的计算方式是相似的,利用位掩码位移运算,我们可以自底向上地完成这一分治流程

在这里插入图片描述

public class Solution {
    private static final int M1 = 0x55555555; // 01010101010101010101010101010101
    private static final int M2 = 0x33333333; // 00110011001100110011001100110011
    private static final int M4 = 0x0f0f0f0f; // 00001111000011110000111100001111
    private static final int M8 = 0x00ff00ff; // 00000000111111110000000011111111

    public int reverseBits(int n) {
        n = n >>> 1 & M1 | (n & M1) << 1;
        n = n >>> 2 & M2 | (n & M2) << 2;
        n = n >>> 4 & M4 | (n & M4) << 4;
        n = n >>> 8 & M8 | (n & M8) << 8;
        return n >>> 16 | n << 16;
    }
}

 

详细讲解

32位无符号整数,如 1111 1111 1111 1111 1111 1111 1111 1111 
表示成16进制        f    f    f    f    f    f    f   f
一个16进制的f代表二进制的4位
ffff ffff右移16位,变成 0000 ffff
ffff ffff左移16位,变成 ffff 0000
它们俩相或,就可以完成低16位与高16位的交换

之后的每次分治,都要先与上一个掩码,再进行交换

class Solution {
public:
    uint32_t reverseBits(uint32_t n) {
        n = (n >> 16) | (n << 16); //低16位与高16位交换
        n = ((n & 0xff00ff00) >> 8) | ((n & 0x00ff00ff) << 8); //每16位中低8位和高8位交换; 1111是f
        n = ((n & 0xf0f0f0f0) >> 4) | ((n & 0x0f0f0f0f) << 4); //每8位中低4位和高4位交换;
        n = ((n & 0xcccccccc) >> 2) | ((n & 0x33333333) << 2); //每4位中低2位和高2位交换; 1100是c,0011是3
        n = ((n & 0xaaaaaaaa) >> 1) | ((n & 0x55555555) << 1); //每2位中低1位和高1位交换; 1010是a,0101是5
        return n;
    }
};

解法四(接口法)

public class Solution {
    public int reverseBits(int n) {
         return Integer.reverse(n);
    }
}
  • 不妨透露下,Integer.reverse() API 内部源码就是解法三的位运算分治法

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值