题目
- 颠倒给定的 32 位无符号整数的二进制位。
提示:
-
请注意,在某些语言(如 Java)中,没有无符号整数类型。在这种情况下,输入和输出都将被指定为有符号整数类型,并且不应影响您的实现,因为无论整数是有符号的还是无符号的,其内部的二进制表示形式都是相同的。
在 Java 中,编译器使用二进制补码记法来表示有符号整数。因此,在上面的 示例 2 中,输入表示有符号整数 -3,输出表示有符号整数 -1073741825。 -
进阶: 如果多次调用这个函数,你将如何优化你的算法?
示例 1:
输入: 00000010100101000001111010011100
输出: 00111001011110000010100101000000
解释: 输入的二进制串 00000010100101000001111010011100 表示无符号整数 43261596,
因此返回 964176192,其二进制表示形式为 00111001011110000010100101000000。
题解
解法一(位运算)
-
将 n 视作一个长为 32 的二进制串,从低位(取第一位
n&1
)往高位枚举 n 的每一位,将其倒序添加到翻转结果 rev 中。 -
代码实现中,每枚举一位就将 n 右移一位(
n>>> 1
),这样当前 n 的最低位就是我们要枚举的比特位。当 n 为 0 时即可结束循环。
注意: 中,没有无符号整数类型,因此对 n 的右移操作应使用逻辑右移。
算术右移 >> :舍弃最低位,高位用符号位填补;
逻辑右移 >>> :舍弃最低位,高位用 0 填补。
public class Solution {
public int reverseBits(int n) {
int rev = 0;
for (int i = 0; i < 32 && n != 0; ++i) {
rev |= (n & 1) << (31 - i);
n >>>= 1;
}
return rev;
}
}
解析:
<< ( 31 - i)
为向左移,因为是逆序rev | =
为类似于递加
解法二 (回文数)
- 有点类似于回文数 逆序,将十进制的 乘10以及模改成 2 即可,当然是数不超范围情况下
public static Boolean hws(long n) {
long num = 0 ;
long y = n ;
while(y!=0) {
num = num*10+y%10 ;
y/=10;
}
if(num == n) return true ;
else return false ;
}
解法三 (分治法)
-
若要翻转一个二进制串,可以将其均分成左右两部分,对每部分递归执行翻转操作,然后将左半部分拼在右半部分的后面,即完成了翻转。
-
由于左右两部分的计算方式是相似的,利用
位掩码
和位移
运算,我们可以自底向上地完成这一分治流程
public class Solution {
private static final int M1 = 0x55555555; // 01010101010101010101010101010101
private static final int M2 = 0x33333333; // 00110011001100110011001100110011
private static final int M4 = 0x0f0f0f0f; // 00001111000011110000111100001111
private static final int M8 = 0x00ff00ff; // 00000000111111110000000011111111
public int reverseBits(int n) {
n = n >>> 1 & M1 | (n & M1) << 1;
n = n >>> 2 & M2 | (n & M2) << 2;
n = n >>> 4 & M4 | (n & M4) << 4;
n = n >>> 8 & M8 | (n & M8) << 8;
return n >>> 16 | n << 16;
}
}
详细讲解
32位无符号整数,如 1111 1111 1111 1111 1111 1111 1111 1111
表示成16进制 f f f f f f f f
一个16进制的f代表二进制的4位
ffff ffff右移16位,变成 0000 ffff
ffff ffff左移16位,变成 ffff 0000
它们俩相或,就可以完成低16位与高16位的交换
之后的每次分治,都要先与上一个掩码,再进行交换
class Solution {
public:
uint32_t reverseBits(uint32_t n) {
n = (n >> 16) | (n << 16); //低16位与高16位交换
n = ((n & 0xff00ff00) >> 8) | ((n & 0x00ff00ff) << 8); //每16位中低8位和高8位交换; 1111是f
n = ((n & 0xf0f0f0f0) >> 4) | ((n & 0x0f0f0f0f) << 4); //每8位中低4位和高4位交换;
n = ((n & 0xcccccccc) >> 2) | ((n & 0x33333333) << 2); //每4位中低2位和高2位交换; 1100是c,0011是3
n = ((n & 0xaaaaaaaa) >> 1) | ((n & 0x55555555) << 1); //每2位中低1位和高1位交换; 1010是a,0101是5
return n;
}
};
解法四(接口法)
public class Solution {
public int reverseBits(int n) {
return Integer.reverse(n);
}
}
- 不妨透露下,
Integer.reverse()
API 内部源码就是解法三的位运算分治法