题目
-
给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。
-
高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。
输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
注意: 答案不唯一
题解
- 利用性质:BST(二叉搜索树)的中序遍历是升序的
- 因此本题等同于根据中序遍历的序列恢复二叉搜索树。
- 因此我们可以以升序序列中的任一个元素作为根节点,以该元素左边的升序序列构建左子树,以该元素右边的升序序列构建右子树,这样得到的树就是一棵二叉搜索树啦
- 又因为本题要求高度平衡,因此我们需要选择升序序列的中间元素作为根节点
代码
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode sortedArrayToBST(int[] nums) {
return dfs(nums,0,nums.length-1) ;
}
// 思路有点类似于二分查找
public TreeNode dfs(int[] nums, int low, int high){
if(low > high){
return null ;
}
int mid = low + (high - low) / 2 ;
TreeNode root = new TreeNode(nums[mid]) ;
// 递归构建 root 左右子树
root.left = dfs(nums,low,mid-1) ;
root.right = dfs(nums,mid+1,high) ;
return root ;
}
}