leetcode - 135. Candy

算法系列博客之Greedy

Greedy 贪心算法是一种非常优美的算法,不过贪心算法本身的可行性很多时候会受到一些局限。但是一旦能够找到一种可行的贪心策略,问题的解决将会变得非常高效,因为通常情况下,贪心算法的复杂度是O(n)

本篇博客将运用这种思想来解决leetcode上135号问题


问题描述:

There are N children standing in a line. Each child is assigned a rating value.

You are giving candies to these children subjected to the following requirements:

Each child must have at least one candy.
Children with a higher rating get more candies than their neighbors.
What is the minimum candies you must give?

从贪心的角度出发,目的是给每个孩子尽量少的糖,我们很容易想到这样一种策略:
给左侧第一个孩子一颗糖,后面的孩子都和他的前一个作比较
      ·   如果rating值比其左侧孩子大,则让他得到的糖的个数比其左侧孩子的糖的个数大1
      ·   否则(即rating值小于或者等于其左侧孩子),只给他一颗糖
但是仔细研究,我们发现,这样存在一个问题:
       题中的要求是如果一个孩子比他旁边的孩子rating值大,就应该拥有比其旁边多的糖,这里的旁边是指两侧;
       然而,目前的策略有可能会造成某个孩子比右侧的孩子rating值大,但是他们都只拥有1颗糖
乍一看好像这种贪心策略在此不可行,但是细心一点就会发现,它至少保证了前进方向上满足规则
那么我们将前进方向反过来再来一次不就可以保证两个方向(也就是每个孩子两侧)都满足规则了吗?
不过反过来再来一次时初始状态就不再一样,所以策略需要做一点点微调:
      ·   如果rating值比右侧孩子大并且他拥有的糖的个数小于等于右侧孩子,则让他得到的糖的个数比前一个孩子大1
      ·   否则(即rating值小于或者等于前一个孩子),不更改他所拥有的糖的个数
其python 代码实现如下:

class Solution(object):
    def candy(self, ratings):
        n = len(ratings)
        candys = [1] * n
        for i in range(1, n):
            if (ratings[i] > ratings[i-1]):
                candys[i] = candys[i-1] + 1

        res = candys[n-1]
        for i in range(n-2, -1, -1):
            if (ratings[i] > ratings[i+1] and candys[i] <= candys[i+1]):
                candys[i] = candys[i+1] + 1
            res += candys[i]
        return res

两次循环使得每个孩子的左右两侧都满足性质,因而这种贪心策略是可行的,算法的正确性可以很容易得到证明

时间复杂度分析,两次并行线性循环,循环内部都是常数运算操作,因而O(n)
空间复杂度分析,需要开辟一个和rating一样大小的数组,因而O(n)
此刻我们可以说,这种时间和空间上都能达到线性复杂度的贪心算法是令人满意的

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值