AcWing 858. Prim算法求最小生成树
给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。
给定一张边带权的无向图G=(V, E),其中V表示图中点的集合,E表示图中边的集合n=|V|,m=|E|。
由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的最小生成树。
输入格式
第一行包含两个整数n和m。
接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。
数据范围
1≤n≤500,
1≤m≤105,
图中涉及边的边权的绝对值均不超过10000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
朴素版Prim算法思路:
该算法与dijkstra算法比较类似,本算法将dist数组定义为某点到集合的距离(即该点到集合内部所有边的长度最小值)。先将dist数组的值初始化为无穷大,n次循环查找,找到集合外距离最近的点,并用找到的点更新其他点到集合的距离,最后将该点加入到集合中。若找到的最近的点的dist值还是为无穷大,则说明不存在最小生成树。邻接矩阵存稠密图。
Code:
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 510, INF = 0x3f3f3f3f;
int n, m;
int g[N][N], dist[N];//g为邻接矩阵存放边的信息
bool st[N];
int prim()
{
memset(dist, 0x3f, sizeof dist);
int res = 0;//边权重之和
for(int i = 0; i < n; i ++)//i表示集合内的点的数目
{
int t = -1;
for(int j = 1; j <= n; j ++)
if(!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
if(i && dist[t] == INF) return INF;
if(i) res += dist[t];
for(int j = 1; j <= n; j ++) dist[j] = min(dist[j], g[t][j]);
st[t] = true;
}
return res;
}
int main()
{
cin >> n >> m;
memset(g, 0x3f, sizeof g);
while(m --)
{
int a, b, c;
cin >> a >> b >> c;
g[a][b] = g[b][a] = min(g[a][b], c);
}
int t = prim();
if(t == INF) puts("impossible");
else cout << t << endl;
return 0;
}
AcWing 859. Kruskal算法求最小生成树
给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。
给定一张边带权的无向图G=(V, E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。
由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的最小生成树。
输入格式
第一行包含两个整数n和m。
接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。
数据范围
1≤n≤105,
1≤m≤2∗105,
图中涉及边的边权的绝对值均不超过1000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
Kruskal算法思路:
先将所有边按权重从小到大排序,然后枚举每条边a, b以及权重w, 若a,b不连通,将该边加入到连通块中(该步可以采用并查集的算法)。
Code:
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1000010;
int n, m, p[N];
struct Edge{
int a, b, w;
bool operator< (const Edge &W)const
{
return w < W.w;
}
}edges[N];
int find(int x)
{
if(p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main()
{
cin >> n >> m;
for(int i = 0; i < m; i ++)
{
int a, b, w;
cin >> a >> b >> w;
edges[i] = {a, b, w};
}
sort(edges, edges + m);
for(int i = 1; i <= n; i ++) p[i] = i;
int res = 0, cnt = 0;
for(int i = 0; i < m; i ++)
{
int a = edges[i].a, b = edges[i].b, w = edges[i].w;
a = find(a), b = find(b);
if(a != b)
{
p[a] = b;
res += w;// res存放累加的边权重之和
cnt ++;//添加到集合里的边的个数
}
}
if(cnt < n - 1) puts("impossible");//边的个数不够说明生成数不存在
else cout << res << endl;
return 0;
}
洛谷P2872 [USACO07DEC]Building Roads S
给定 n 个点的坐标,第 i 个点的坐标为 (xi,yi),这 n 个点编号为 1 到 n。给定 m 条边,第 i条边连接第 ui个点和第 vi 个点。现在要求你添加一些边,并且能使得任意一点都可以连通其他所有点。求添加的边的总长度的最小值。
输入格式:
第一行两个整数 n,m代表点数与边数。
接下来 n 行每行两个整数 xi,yi 代表第 i 个点的坐标。
接下来 m 行每行两个整数 ui,vi 代表第 i 条边连接第 ui个点和第 vi 个点。
输出格式:
一行一个实数代表添加的边的最小长度,要求保留两位小数,为了避免误差, 请用 64 位实型变量进行计算。
输入样例:
4 1
1 1
3 1
2 3
4 3
1 4
输出 样例:
4.00
数据规模与约定
对于 100% 的整数,1 ≤ n,m ≤1000,1≤ xi, yi ≤106, 1≤ ui,vi ≤n。
Kruskal算法题目思路:
本题主要运用了Kruskal算法,本题需要注意的是边权的问题,首先要将所有点之间的距离计算出来记入edges数组中,由于有些点之间是已经连通的,所以将这些边的边权设为0.0即可,其余的就是Kruskal算法(将所有按权重从小到大排序,枚举每条边,若不连通就将该边加入到集合中,边权累加到最终结果中)。
Code:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
using namespace std;
const int N = 1010, M = 1000010;
int n, m;
int x[N], y[N], p[N];
struct Edge{
int a, b;
double w;
bool operator< (const Edge &W)const
{
return w < W.w;
}
}edges[M];
double computeDist(int a, int b, int c, int d)
{
return sqrt(pow((double)(a-c), 2) + pow((double)(b-d), 2));
}
int find(int x)
{
if(p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i ++)
{
cin >> x[i] >> y[i];
p[i] = i;
}
int k = 0;
for(int i = 1; i <= n - 1; i ++)
for(int j = i + 1; j <= n; j ++)
{
edges[k ++]={i, j, computeDist(x[i],y[i],x[j],y[j])};
}
while(m --)
{
int a, b;
cin >> a >> b;
edges[k ++] = {a, b, 0.0};
}
sort(edges, edges + k);
double res = 0.0;
for(int i = 0; i < k; i ++)
{
int a = edges[i].a, b = edges[i].b;
double w = edges[i].w;
a = find(a), b = find(b);
if(a != b)
{
p[a] = b;
res += w;
}
}
printf("%.2lf", res);
return 0;
}