高动态范围(HDR)图像处理技术在计算机视觉领域扮演着重要的角色

本文介绍了HDR成像技术在计算机视觉中的应用,包括图像增强、目标检测和图像分割。通过图像曝光融合和色调映射,HDR能提高图像的动态范围,使细节更加清晰,提高检测和分割的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

HDR(High Dynamic Range)技术是一种用于增强图像动态范围的技术,它通过合并多个不同曝光水平的图像来捕捉更广泛的亮度和颜色范围。在计算机视觉任务中,HDR技术可以用于图像增强、目标检测、图像分割等应用。本文将介绍HDR成像技术的学习和计算机视觉中的应用,并提供相关的源代码示例。

一、HDR成像技术学习

  1. 图像曝光融合

图像曝光融合是HDR技术的基础。它通过采集一系列不同曝光水平的图像,并将它们融合在一起,以产生一张具有更广泛动态范围的图像。常见的曝光融合方法包括简单平均法、加权平均法和基于图像对齐的融合方法。

以下是一个使用OpenCV库实现图像曝光融合的示例代码:

import cv2
import numpy as np

# 读取多个曝光水平的图像
image1 = cv2.imread('im
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值