随着新能源车的兴起,车内娱乐功能越来越来越丰富,车载卡拉OK系统成了许多新能源车的标配,卡拉OK系统其中一个比较难的问题是由于话筒和车载音响距离近很容易引起啸叫,原来用于车内前后排交流的反馈抑制算法也需解决卡拉OK系统的啸叫抑制问题。以下结合车内声场环境分析算法需要解决哪些问题。
1,高增益啸叫抑制
由于驾驶员不可能拿着话筒与后排乘客讲话,往往车载麦克风离驾驶员较远,要保证驾驶员的声音被扩出需要较高的反馈抑制传声增益,一般需要稳态扩声增益(ASG)高于12dB才能满足车内扩声需求。传统移频、陷波等啸叫抑制算法仅能实现2-5dB的传声增益,一般不适合车内系统。而自适应反馈抑制算法(AFC)可通过实时抵消回波,将传声增益提升至10-12dB。同时由于需要兼顾卡拉OK系统的高保真,对反馈抑制的失真度也提出了较高的要求。
2,远距离均匀覆盖
为实现驾驶员区域拾音全面覆盖,需采用自动增益控制算法(AGC)增强拾音距离。AGC算法可根据驾驶员的发声大小动态调节音量,确保无论驾驶员说话声音大小都能保证扩声效果清晰稳定。
3,AI深度学习降噪
为防止扩声系统对行车噪声的放大,导致体验下降。通过AI深度学习降噪技术,可同步抑制稳态噪声(车载空调声)和非稳态噪声(胎噪,敲击声等),噪声不被放大,保障语音纯净度。
4,自适应部署
由于不同的车型车内差异较大,传统调试流程复杂。基于强自适应算法,系统可自动适配不同车型声场参数,实现“即插即用”(Plug-and-Play),大幅降低车内扩声调试难度。
算法实现方案
通过多种算法结合的反馈抑制算法能够使得传声增益达到15-18dB同时兼顾保真度, 智能AGC、AI降噪,在保障低延时的同时,有效解决车内复杂声场下的扩声难题,demo测试W-> Reid1001
反馈抑制(啸叫抑制)-1
于 2025-03-13 23:14:26 首次发布