一、什么是学习
我国古代对学习有很好的论述。《论语》说:“学而时习之。”学和习是两个既有联系、又
有不同的概念。学是获得知识、技巧和能力;习是复习、练习、巩固掌握知识、技巧和能力。
《中庸》把学习分成五个步骤:学、问、思、辨、行。
近代学习是心理学的一个术语。它有广义和狭义之分。广义的学习是指人和动物在生活过程
中获得个体经验的过程,是动物和人类生活中的普遍现象。如动物园里的象学会吹口琴、海
狮和鲸鱼学会顶球、熊学会合掌拜谢等。人能大至获得科学知识,学会处世接物,小至学会
走路、写字、游泳等,这些都是学习的结果。因此学习包括人的行走、言语、知识、技能、
习惯、兴趣、态度和道德品质等学习。狭义的学习指的是学生在学校里的学习。它是一种有
目的、有计划、有组织的学习活动,是以掌握人类所积累的经验为其任务的。因此,在学校
教育情景中学习是指学生掌握知识、技能、能力、学会学习、学会思考和形成一定的思想情
感、道德品质以及个性变化等的过程。
学习是有意识的,自觉的,但也有无意识的,不自觉的。它是有意识和无意识协调作用的过
程。美国克拉申(S.D.Krashen)把不自觉地学会东西的过程叫做习得(acquisition)。
他的语言监控说(monitor hypothesis)认为,儿童学习母语是潜意识、无意识的过程。他
们首先使用的是在无意识中习得语言的语法规则。因此,克拉申认为,学习外语像儿童学习
母语一样是潜意识的、无意识的过程,是在无意识中习得语言规则的。
二、什么是机器学习
机器学习通过从数据里提取规则或模式来把数据转换成信息。主要的方法有归纳学习法和分
析学习法。数据首先被预处理,形成特征,然后根据特征创建某种模型。机器学习算法分析
收集到的数据,分配权重、阈值和其他参数达到学习目的。如果只想把数据分成不同的类,
那么“聚类”算法就够了;如果需要预测,则需要一个“分类”算法。OpenCV库里面包含
的是基于概率统计的机器学习方法,贝叶斯网络、马尔科夫随机场、图模型等较新的算法还
在成长过程中,所以OpenCV还没有收录。 机器学习的算法有很多很多:
1、Mahalanobis 2、K-means 非监督的聚类方法
3、朴素贝叶斯分类器 特征是高斯分布&&统计上相互独立 条件比较苛刻
4、决策数 判别分类器,根据阈值分类数据,速度快。
5、Boosting 多个判别子分类器的组合
6、随机森林 由多个决策树组成
7、人脸检测/Haar分类器 使用Boosting算法
8、期望最大化EM 用于聚类的非监督生成算法
9、K-近邻 最简单的分类器
10、神经网络(多层感知器) 训练分类器很慢,但是识别很快
11、支持向量机 SVM 可以分类,也可以回归。通过分类超平面实现在高维空间里的最优分类
12、遗传算法 借鉴生物遗传机制 ,随机化非线性计算算法总之呢,个人觉得,机器学习、数
据挖掘、模式识别、专家系统等方向和领域目前还是一种比较混乱的局面。学术界和商业
界可能是不同的,关于算法的理论研究和使用这些方法生成商品是分别关注的。按照不同
的领域、不同的方法可以划分出众多的分支。但是有一点是肯定的,这些在上世纪80年代
提出来的公式和证明,如今正在变成一行行的代码,在一些猫(tomcat)、IIS等服务器的
支持下,爬上了网络,到处寻觅对主人有用的信息,然后运送到网络中,最终生成产品,
或者半产品。看看你电脑上的那根网线,它那么小,但是很难想象它从你的电脑上拿走了
什么,又给你送来了什么。有些远了,继续说数据这些事。
目前我接触过的算法有: (太多了,一时间真不好说出来) 神经网络(感知器、BP、
RBF等很多的算法),遗传算法,支持向量机,层次分析法,各种回归,灰色系统(国产的
方法,用于不确定知识的预测),粗糙集,贝叶斯网络,时间序列分析(也有很多)。学习
和研究纸面的算法公式只是第一步,不可以忽略的基础,如何使用这些方法,在浩瀚的互联
网上找到自己需要的、满足客户需要的数据和信息,从而让需要的人能够更加方便地得到,
是今后的重头戏了。貌似很多的企业已经进军数据仓库这一块,并尝到了巨大的甜头,也
有企业养着一队预备军,专注研发,随时准备奔赴前线,占领市场。无线网络市场的竞争
已经到了激烈的局面,普适计算的时代也快到了吧。它依赖于硬件产品的可穿戴,和软件
产品的内嵌、快速响应。总而言之,越来越人性化,谁都不愿意抱着笔记本电脑蹲厕所,
是吧?