hello大家好!机器学习的小文章如期而至~
还是和数据结构的顺序一样,也是从头开始描述,有基础的朋友可以看目录划重点哈
OK,咱们话不多说,直奔主题!
本次介绍也是根据我之前学习的经验来选择相应的内容,也参考了带我的教授的一些教学内容,所以可以说是经历之谈,不是那种方方面面俱全的百科,略写的部分后续的文章还会展开讲的,不好理解的地方也带过了或者没有提及,毕竟是入门嘛(顺带一提,这位教授来自MIT,大家可以看看外国顶级大学的教学有什么不一样)
一、什么是机器学习
1、基本介绍
机器学习(Machine Learning)是一种通过数据驱动的方法让计算机自动改进和学习的技术。它属于人工智能的一个分支,核心在于构建算法和模型,使计算机能够在没有明确编程指令的情况下从数据中提取规律和知识,从而进行预测或决策。
我们可以将其总结成一句话:与传统编程不同,机器学习是通过收集对某些现象的观察结果,让程序学习潜在的模式。
以下图为例:
2、机器学习的发展历史与生命周期
机器学习的发展历程从1943年建立人工神经元模型开始,1957年感知器的发明奠定了早期基础,1986年反向传播算法推动了神经网络的复兴,2012年卷积神经网络在ImageNet竞赛中获胜标志着深度学习的突破,2016年AlphaGo击败围棋冠军展示了强化学习的潜力,2017年Transformer架构提出改变了自然语言处理的格局,未来的发展趋势包括了自动化机器学习和联邦学习。
我们可以总结出以下几个重要的里程碑:
1949——唐纳德-赫伯创建了一个基于脑细胞相互作用的模型。
1957——第一台神经计算机 "Mark 1 感知器 "被设计出来。
1967——近邻算法的出现,首先是解决了 TSP 问题。
1960s—