Universal Neural-Cracking-Machines:Self-Configurable Password Models from Auxiliary Data

今天突发奇想想要更新博客,选了这篇看了好久的文章记录学习历程

目前大多数做口令模型、口令猜测、口令强度检测计的都是数据集驱动型。论文提出了"通用"密码模型的概念--这种密码模型一旦经过预先训练,就能根据目标系统自动调整其猜测策略。为此,该模型无需从目标凭证中获取任何明文密码。相反,它利用用户的辅助信息(如电子邮件地址)作为代理信号来预测底层密码分布。具体来说,该模型利用深度学习捕捉一组用户(如网络应用程序的用户)的辅助数据与其密码之间的相关性。然后利用这些模式,在推理时为目标系统创建量身定制的密码模型。不需要进一步的训练步骤、有针对性的数据收集,也不需要事先了解群体的密码分布情况。除了改进当前的密码强度估算技术外,该模型还能让任何终端用户(如系统管理员)为其系统自主生成量身定制的密码模型,而无需收集合适的训练数据和拟合底层机器学习模型等通常无法实现的要求。最终,我们的框架能将经过良好校准的密码模型民主化,解决大规模部署密码安全解决方案所面临的主要挑战。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值