欧拉筛选
欧拉筛选通过用数组记录使每个数只被遍历一次故为O(n)。
代码如下:
#include<iostream>
using namespace std;
int prime[100005];
bool vis[100005];
int n, cnt;
int main() {
cnt = 0;
cin >> n;
for (int i = 2; i <= n; i++) {
if (!vis[i])prime[++cnt] = i;
for (int j = 1; j <= cnt && i * prime[j] <= n; j++) {
vis[prime[j] * i] = 1;
if (i % prime[j] == 0) {
break;
}
}
}
for (int i = 1; i <= cnt; i++) cout << prime[i] << endl;
return 0;
}
i * Ans[j]的最小质因子必然是Ans[j]。证明:令k=i*Ans[j],若其最小因子小于Ans[j](设其为q),则必有i%q==0与,则 if (i % q== 0)break在Ans[j]*i之前产生导致没有 prime[i * Ans[j]] = 0;与 i * Ans[j]的存在矛盾,故 i * Ans[j]的最小质因子必然是Ans[j]。
欧拉函数
在数论中,对于正整数n,欧拉函数φ(n)是[1,n]区间内和n互质的数的个数
对于上述公式给出不太完整的证明过程:
ps:1与所有数互质
首先,若一个数n可以表示为p^k(p为质数)。因为任何不含公因子的数为互质的数,那么[1,n]区间内和n互质的数,是为该范围内所有不含p这一因子的数,其数量为:n-所有含p这一因子的数(1*p,2*p...,p^(k-1)*p)的个数——n-p^(k-1)。
然后,由“唯一分解定理”可知,任何数都能表示为质数乘积的形式,则有:
再由“中国剩余定理”可知,
综上式子得证。
欧拉函数主要有以下特点:
1.φ(a·b)=φ(a)·φ(b)
2.若 x%y=0 则φ(xy)=φ(x)*y
3.若 x%y≠0 则φ(xy)=φ(x)*(y-1)
两者结合
欧拉函数可以在欧拉筛选中求取。
代码如下:
#include<iostream>
using namespace std;
int phi[100005], prime[100005];
bool vis[100005];
int n, cnt;
int main() {
phi[1] = 1;
cnt = 0;
cin >> n;
for (int i = 2; i <= n; i++) {
if (!vis[i])prime[++cnt] = i, phi[i] = i - 1;
for (int j = 1; j <= cnt && i * prime[j] <= n; j++) {
vis[prime[j] * i] = 1;
if (i % prime[j] == 0) {
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
else phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
}
for (int i = 1; i <= n; i++) cout << phi[i] << endl;
return 0;
}