欧拉筛选和欧拉函数

本文介绍了欧拉筛选和欧拉函数的概念,提供了C++实现代码,并详细解释了欧拉函数的性质。欧拉筛选用于高效地找出小于等于给定数的所有质数,而欧拉函数φ(n)则计算与n互质的数的数量。通过唯一分解定理和中国剩余定理,证明了欧拉函数的性质,并展示了如何在欧拉筛选过程中求取欧拉函数值。
摘要由CSDN通过智能技术生成

欧拉筛选

欧拉筛选通过用数组记录使每个数只被遍历一次故为O(n)。

代码如下:

#include<iostream>
using namespace std;
int prime[100005];
bool vis[100005];
int n, cnt;
int main() {
    cnt = 0;
    cin >> n;
    for (int i = 2; i <= n; i++) {
        if (!vis[i])prime[++cnt] = i;
        for (int j = 1; j <= cnt && i * prime[j] <= n; j++) {
            vis[prime[j] * i] = 1;
            if (i % prime[j] == 0) {
                break;
            }
        }
    }
    for (int i = 1; i <= cnt; i++) cout << prime[i] << endl;
    return 0;
}

 i * Ans[j]的最小质因子必然是Ans[j]。证明:令k=i*Ans[j],若其最小因子小于Ans[j](设其为q),则必有i%q==0与,则  if (i % q== 0)break在Ans[j]*i之前产生导致没有  prime[i * Ans[j]] = 0;与 i * Ans[j]的存在矛盾,故 i * Ans[j]的最小质因子必然是Ans[j]。

欧拉函数 

        在数论中,对于正整数n,欧拉函数φ(n)是[1,n]区间内和n互质的数的个数

        对于上述公式给出不太完整的证明过程:

        ps:1与所有数互质

        首先,若一个数n可以表示为p^k(p为质数)。因为任何不含公因子的数为互质的数,那么[1,n]区间内和n互质的数,是为该范围内所有不含p这一因子的数,其数量为:n-所有含p这一因子的数(1*p,2*p...,p^(k-1)*p)的个数——n-p^(k-1)。

        然后,由“唯一分解定理”可知,任何数都能表示为质数乘积的形式,则有:

        再由“中国剩余定理”可知,

        综上式子得证。 

  欧拉函数主要有以下特点:

        1.φ(a·b)=φ(a)·φ(b)

        2.若 x%y=0 则φ(xy)=φ(x)*y 

        3.若 x%y≠0 则φ(xy)=φ(x)*(y-1) 

两者结合

        欧拉函数可以在欧拉筛选中求取。

        代码如下:

#include<iostream>
using namespace std;
int phi[100005], prime[100005];
bool vis[100005];
int n, cnt;
int main() {
    phi[1] = 1;
    cnt = 0;
    cin >> n;
    for (int i = 2; i <= n; i++) {
        if (!vis[i])prime[++cnt] = i, phi[i] = i - 1;
        for (int j = 1; j <= cnt && i * prime[j] <= n; j++) {
            vis[prime[j] * i] = 1;
            if (i % prime[j] == 0) {
                phi[i * prime[j]] = phi[i] * prime[j];
                break;
            }
            else phi[i * prime[j]] = phi[i] * (prime[j] - 1);
        }
    }
    for (int i = 1; i <= n; i++) cout << phi[i] << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值