采用最普通分治算法:O(N^2)
Sub:使用一个支点将数组分为两部分;Relate:该支点所在数组的位置,若为k则返回,若大于k则将前半数组作为新的问题,反之将后半数组作为新的问题。Time:对于最好的情况,直接找到k;然而最坏的情况,每次支点都找到当前数组的第一个数,而k为最后一个数,这样的时间复杂度为O(N^2)
使用最普通的分治算法甚至不如直接对数组进行排序再寻找第k大的数
为了方便讲解,设N%5==0,若不为0可以通过在数组尾部补齐解决。
采用改进过的分治算法:O(n)
其最重要的改进就在于支点的选择,使其最差情况任为O(N)
Sub:将数组根据支点分为三个新的数组(小于:array_lt、等于:array_eq、大于支点:array_gt),根据k的大小选择数组作为子问题。
Relate:1.将数组拆分为n/5组每组5个,在每组5个中选出中值并以之分为两半(每组时间复杂度为c,有N/5组所以总时间复杂度为O(N)。2.将n/5个组的中值视为新数组,然后将其视为子问题1——在n/5个数中找出中间的数(T(2N/10));3.以第2步找出的中值的中值为支点,将数组分为小于、等于、大于支点的三部分O(N);4.分析知至少有3N/10个数小于等于支点数,同理至少有3N/10个数大于等于支点数
(见下图:先将每一组中小于中位数的数放于上部,大于的放于下部,再将中位数小于中位数的中位数的组放于中位数的中位数的左边