题目:
两个整数之间的汉明距离指的是这两个数字对应二进制位不同的位置的数目。
给出两个整数 x 和 y,计算它们之间的汉明距离。
注意:
0 ≤ x, y < 231.
示例:
输入: x = 1, y = 4
输出: 2
解释:
1 (0 0 0 1)
4 (0 1 0 0)
↑ ↑
上面的箭头指出了对应二进制位不同的位置。
代码:
/**
* @作者:dhc
* @创建时间:22:00 2018/8/1
* @描述:461.汉明距离
*/
public class FourHundredAndSixtyOne {
//思路:先将两个数的二进制形式用一个数组保存,然后循环判断即可
public static int hammingDistance(int x, int y) {
int res = 0;
int[] xa = getT(x);
int[] ya = getT(y);
for (int i = 0; i < 32; i++) {
if(xa[i] != ya[i]){
res++;
}
}
return res;
}
public static int[] getT(int x){
int[]re = new int[32];
int count = 31;
int ys = 0;
while (x != 0){
ys = x%2;
x = x/2;
re[count--] = ys;
}
return re;
}
//方法2,本来是想不到这个方法的,刚刚做过无符号整数1的个数,其中用到的是位运算。
//这里也是用一个32位的数和x和y分别做位与,这个数是从1开始依次网右移位,如果x和y的某
// 位相同,则他们和这个数的位与运算结果应该是相同的,否则不同(一个为1,一个为0)
public static int hammingDistance1(int x, int y) {
int flag = 1;
int res = 0;
while(flag != 0){
if(((x&flag)==0 &&(y&flag)!=0) ||((x&flag)!=0 &&(y&flag)==0)){
res++;
}
flag = flag << 1;
}
return res;
}
//大佬答案:同样很巧妙,先做^运算,得到的数的1的个数就是汉明距离,转化成了求1的个数问题,更好
public int hammingDistance2(int x, int y) {
int res = 0;
int temp = x ^ y;
while (temp!= 0) {
res ++;
temp &= (temp - 1);
}
return res;
}
//时间最短范例
public int hammingDistance3(int x, int y) {
int res = 0;
String s1 = Integer.toBinaryString(x);
String s2 = Integer.toBinaryString(y);
int len1 = s1.length();
int len2 = s2.length();
while (len1 > len2) {
s2 = "0" + s2;
len2++;
}
while (len1 < len2) {
s1 = "0" + s1;
len1++;
}
char[] a = s1.toCharArray();
char[] b = s2.toCharArray();
for (int i = 0; i < len1; i++) {
if (a[i] != b[i]) {
res++;
}
}
return res;
}
public static void main(String[] args) {
System.out.println(hammingDistance1(7,8));
}
}