最大流算法(Ford-Fulkerson)

适合点比较少的(V<1000)

struct edge
{
    int to,cap,rev;//终点,容量,反向边
};
vector<edge>G[N];//图的邻接矩阵表示
bool used[N];//dfs中用到的访问标记
//向图中增加一条从s到t容量为cap的边
void addedge(int u,int v,int w)
{
    G[u].push_back((edge){v,w,G[v].size()});
    G[v].push_back((edge){u,0,G[u].size()-1});//如果是无向图,只要把0改成w即可
}
int dfs(int v,int t,int f)
{
    if(v==t)
        return f;
    used[v]=true;
    for(int i=0;i<G[v].size();i++)
    {
        edge &e=G[v][i];
        if(!used[e.to]&&e.cap>0)
        {
            int d=dfs(e.to,t,min(f,e.cap));
            if(d>0)
            {
                e.cap-=d;
                G[e.to][e.rev].cap+=d;
                return d;
            }
        }
    }
    return 0;
}
//求解从s到t上的最大流
int max_flow(int s,int t)
{
    int flow=0;
    for(;;)
    {
        memset(used,0,sizeof(used));
        int f=dfs(s,t,INF);
        if(f==0)
            return flow;
        flow+=f;
    }
}
void Init()
{
    for(int i=0;i<N;i++)
        G[i].clear();
}

适合点多的

struct Node
{
    int x,y,id;
}node[N];
struct edge
{
    int to,cap,rev;//终点,容量,反向边
};
vector<edge>G[N];//图的邻接矩阵表示
bool used[N];//dfs中用到的访问标记
int level[N];//顶点到源点的距离标号
int iter[N];//当前弧,在其之前的边已经没用了
bool cmp(Node a,Node b)
{
    if(a.x==b.x)
        return a.y>b.y;
    else
        return a.x<b.x;
}
//向图中增加一条从s到t容量为cap的边
void addedge(int u,int v,int w)
{
    G[u].push_back((edge){v,w,G[v].size()});
    G[v].push_back((edge){u,0,G[u].size()-1});//如果是无向图,只要把0改成w即可
}
//通过bfs计算从源点出发的距离标号
void bfs(int s)
{
    memset(level,-1,sizeof(level));
    queue<int> que;
    level[s]=0;
    que.push(s);
    while(!que.empty())
    {
        int v=que.front();
        que.pop();
        for(int i=0;i<G[v].size();i++)
        {
            edge &e=G[v][i];
            if(e.cap>0&&level[e.to]<0)
            {
                level[e.to]=level[v]+1;
                que.push(e.to);
            }
        }
    }
}
//通过dfs寻找增广路径
int dfs(int v,int t,int f)
{
    if(v==t)
        return f;
    for(int &i=iter[v];i<G[v].size();i++)
    {
        edge &e=G[v][i];
        if(e.cap>0&&level[v]<level[e.to])
        {
            int d=dfs(e.to,t,min(f,e.cap));
            if(d>0)
            {
                e.cap-=d;
                G[e.to][e.rev].cap+=d;
                return d;
            }
        }
    }
    return 0;
}
//求解从s到t上的最大流
int max_flow(int s,int t)
{
    int flow=0;
    for(;;)
    {
        bfs(s);
        if(level[t]<0)
            return flow;
        memset(iter,0,sizeof(iter));
        int f;
        while((f=dfs(s,t,INF))>0)
            flow+=f;
    }
}
void Init()
{
    for(int i=0;i<N;i++)
        G[i].clear();
}

同样是比较快的:

int s,t;//超级源点和超级汇点
struct Edge
{
    int from, to, cap, flow;
    Edge() {}
    Edge(int from, int to, int cap, int flow): from(from), to(to), cap(cap), flow(flow) {}
};
struct ISAP
{
    int p[N], num[N], cur[N], d[N];
    int t, s, n, m;
    bool vis[N];
    vector<int> G[N];
    vector<Edge> edges;
    void init(int n)//初始化+获取节点数
    {
        this->n = n;
        for (int i = 0; i <= n; i++)
        {
            G[i].clear();
            d[i] = INF;
        }
        edges.clear();
    }

    void AddEdge(int from, int to, int cap)
    {
        edges.push_back(Edge(from, to, cap, 0));
        edges.push_back(Edge(to, from, 0, 0));
        m = edges.size();
        G[from].push_back(m - 2);
        G[to].push_back(m - 1);
    }

    bool BFS()
    {
        memset(vis, 0, sizeof(vis));
        queue<int> Q;
        d[t] = 0;
        vis[t] = 1;
        Q.push(t);
        while (!Q.empty())
        {
            int u = Q.front();
            Q.pop();
            for (int i = 0; i < G[u].size(); i++)
            {
                Edge &e = edges[G[u][i] ^ 1];
                if (!vis[e.from] && e.cap > e.flow)
                {
                    vis[e.from] = true;
                    d[e.from] = d[u] + 1;
                    Q.push(e.from);
                }
            }
        }
        return vis[s];
    }

    int Augment()
    {
        int u = t, flow = INF;
        while (u != s)
        {
            Edge &e = edges[p[u]];
            flow = min(flow, e.cap - e.flow);
            u = edges[p[u]].from;
        }

        u = t;
        while (u != s)
        {
            edges[p[u]].flow += flow;
            edges[p[u] ^ 1].flow -= flow;
            u = edges[p[u]].from;
        }
        return flow;
    }

    int Maxflow(int s, int t)
    {
        this->s = s;
        this->t = t;
        int flow = 0;
        BFS();
        if (d[s] > n)
            return 0;
        memset(num, 0, sizeof(num));
        memset(cur, 0, sizeof(cur));
        for (int i = 0; i < n; i++)
            if (d[i] < INF)
                num[d[i]]++;
        int u = s;
        while (d[s] <= n)
        {
            if (u == t)
            {
                flow += Augment();
                u = s;
            }
            bool ok = false;
            for (int i = cur[u]; i < G[u].size(); i++)
            {
                Edge &e = edges[G[u][i]];
                if (e.cap > e.flow && d[u] == d[e.to] + 1)
                {
                    ok = true;
                    p[e.to] = G[u][i];
                    cur[u] = i;
                    u = e.to;
                    break;
                }
            }
            if (!ok)
            {
                int Min = n ;
                for (int i = 0; i < G[u].size(); i++)
                {
                    Edge &e = edges[G[u][i]];
                    if (e.cap > e.flow)
                        Min = min(Min, d[e.to]);
                }
                if (--num[d[u]] == 0)
                    break;
                num[d[u] = Min + 1]++;
                cur[u] = 0;
                if (u != s)
                    u = edges[p[u]].from;
            }
        }
        return flow;
    }
};
### 回答1: Ford-Fulkerson算法是一种解决最大流问题的算法,它通过不断寻找增广路径来增加流量,直到无法找到增广路径为止。在Matlab中,可以使用图论工具箱中的函数来实现Ford-Fulkerson算法,例如使用graph和maxflow函数。具体实现方法可以参考Matlab官方文档或相关教程。 ### 回答2: Ford-Fulkerson算法是求解最大流问题的一种经典算法,用于确定一个网络中从源节点到汇节点的最大可行流量。下面我将简要介绍如何使用Matlab实现Ford-Fulkerson算法。 首先,我们需要定义一个图结构来表示网络。可以使用邻接矩阵来表示有向图,其中矩阵元素表示边的容量。源节点可以用一个预先定义的节点索引表示,汇节点也可以用另一个预先定义的节点索引表示。 接下来,我们可以实现Ford-Fulkerson算法的关键步骤。算法的主要思想是在剩余网络上找到增广路径,并在这条路径上增加流量,直到不能找到增广路径为止。 具体实现中可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来找到增广路径。在每一次搜索过程中,我们需要判断当前节点是否已经被访问过,并且是否还可以通过当前边增加流量。 在找到增广路径后,我们可以计算出该路径上的最小容量(也称作瓶颈容量),并将该容量从剩余网络中减去。随后,我们将该容量添加到流网络中,并继续寻找新的增广路径。 当无法找到增广路径时,算法结束并返回最大流量值。最大流量值等于从源节点发出的所有流量之和。 综上所述,以上是在Matlab中实现Ford-Fulkerson算法的基本步骤。当然,具体实现中还需要考虑一些细节问题,并且可能需要调用一些Matlab内置的图算法函数来辅助实现。 ### 回答3: Ford-Fulkerson算法是用于求解最大流问题的一种常见算法,适用于有向图。算法的基本思想是不断在剩余网络中寻找一条增广路径,然后更新流量分布,直到无法找到增广路径为止。 在MATLAB中,可以使用图算法工具箱中的函数来实现Ford-Fulkerson算法。具体步骤如下: 1. 首先,需要创建一个有向图对象,并定义图中的节点和边。可以使用Graph对象来进行操作。 2. 然后,设置源节点和汇节点,即确定最大流的起点和终点。 3. 接下来,需要定义图中各个边的初始容量。可以使用addedge函数来添加边,并设置其容量。 4. 之后,可以使用fordfulkerson函数来求解最大流。该函数会返回一个最大流值,同时也会更新图中各个边的流量。 5. 最后,可以使用findedge函数来查找某条边的流量。该函数需要指定边的起点和终点节点,返回对应边的流量值。 需要注意的是,Ford-Fulkerson算法的复杂度较高,最坏情况下为O(f * m),其中f为最大流值,m为边的数量。因此,在处理大规模图的情况下可能会面临一定的挑战。 以上是用MATLAB实现Ford-Fulkerson算法的简要过程。通过使用MATLAB的图算法工具箱,可以方便地对最大流问题进行求解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值