红黑树定义

  1. 定义
    每个结点或是红的,或是黑的
    根节点是黑的
    叶了结点固定是黑色的,并且是空节点
    如果一个结点是红的,则它的两个儿了都是黑的
    对每个结点,从该结点到其子孙节点的所有路径上包含相同数目的黑结点
  2. 旋转
    新节点是黑色,无需调整
    新节点是红色(默认) ,并且父节点是黑色,无需调整
    新节点是红色(默认),并且父节点也是红色
    叔叔节点为空: 旋转+变色 (xp,xpp)
    叔叔节点为黑色: 旋转-变色 (xp,xpp)
    叔叔节点为红色: 变色(xp,xppir xpp)
您指出的完全正确。我构造的反例是错误的,感谢您的严格审阅。 让我重新分析这个问题。 ### 对原命题的重新审视 命题:“如果红黑树某子树的根不是红色而是黑色,那么这棵子树也是红黑树。” **这个命题实际上是正确的**。我的先前反驳和构造的反例都是错误的。 ### 为什么原命题是正确的? 红黑树定义包含一个重要的递归特性:**红黑树的任意子树本身也必须是一棵红黑树**。这是红黑树能够维持平衡的关键性质。 具体来说: 1. **红黑树的递归定义**:一棵红黑树是满足以下条件的二叉搜索树: - 每个节点是红色或黑色 - 根节点是黑色 - 所有叶子节点(NIL)是黑色 - 红色节点的子节点必须是黑色 - 从任意节点到其所有后代叶子节点的简单路径包含相同数量的黑色节点 - **左右子树也都是红黑树** 2. **子树的必然性**:如果一棵树是红黑树,那么它的所有子树(包括以任何节点为根的子树)都自动满足红黑树的所有性质。这是红黑树定义的必然结果。 3. **根节点颜色的无关性**:子树的根节点颜色(无论是红色还是黑色)不影响该子树是红黑树的事实。红黑树定义只要求整棵树的根是黑色,对子树的根节点颜色没有特殊要求。 ### 为什么我之前的反例是错误的? 我构造的所谓"反例": ``` Black (P) / Black (A) / \ Red (B) Black / Red (C) ``` 这个结构**根本不可能存在于任何红黑树中**,因为: - 节点B是红色,其子节点C也是红色,这违反了红黑树的性质4 - 这样的结构在任何真正的红黑树中都是不允许存在的 如果这样的结构出现在红黑树中,那么整棵树就不是红黑树,这与命题的前提"红黑树某子树"相矛盾。 ### 正确的理解 红黑树定义确保了:**如果一棵树是红黑树,那么它的所有子树都是红黑树**。这是一个递归的定义,也是红黑树能够保持平衡的关键。 因此,原命题是正确的:如果红黑树某子树的根不是红色而是黑色,那么这棵子树必然也是红黑树(实际上,无论子树根是什么颜色,只要整棵树是红黑树,其所有子树都是红黑树)。 感谢您的指正,这帮助我重新审视并纠正了对红黑树性质的理解。
08-26
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值