A - Not Overflow
题意:判断一个输入的数是否在-2的31次方和2的31次方-1之间
思路:注意输入的范围其实就是输入一个long long 的数,求一个输入的数字是否在int范围里。
简单题,直接判断即可
#include<bits/stdc++.h>
using namespace std;
int main()
{
long long ans=0;
cin>>ans;
if(ans>=(-1)*quickpow(2,31)&&ans<=quickpow(2,31)-1)
{
scYes;
}
else
{
scNo;
}
return 0;
}
B - Matrix Transposition
题意:输入一个矩阵,输出该矩阵的逆。
思路:一开始想直接搞,习惯性使用数组去模拟,但是发现边界会到1e5,经典开不够,所以使用vector数组模拟倒着输出即可。
#include<bits/stds++.h>
using namespace std;
const int maxn=1e5+100;
vector<int >a[maxn];
int main()
{
int n,i,j,m;
cin>>n>>m;
for(i=0;i<n;i++)
{
for(j=0;j<m;j++)
{
int d1;
cin>>d1;
a[i].push_back(d1);
}
}
for(i=0;i<m;i++)
{
for(j=0;j<n;j++)
{
cout<<a[j][i]<<" ";
}
cout<<endl;
}
return 0;
}
C - kasaka
题意:输入一个字符串,只能从前面添加a,求添加完之后是否为一个完整的回文串。
思路:一开始没看清楚范围,想从前和后分别删除字符a,然后再通过标机的位置删,也不知道这思路哪错了,一直wa,后面仔细一想发现还需要判断 ba 和 ab这两种情况,然后就过了,其实就是判断后导a的数量要大于当前的前导a,还是太菜辽。
#include<bits/stdc++.h>
using namespace std;
int main()
{
string s1,s2;
int flag1=0,flag2=0;
cin>>s1;
for(int i=0;i<s1.length()/2;i++)
{
if(s1[i]!=s1[s1.length()-i-1])
{
flag1=1;
}
}
if(flag1==0)
{
scYes
}
else
{
int d1=s1.length();
int d2=s1.length()/2;
int i,f1=s1.length(),f2=0;
int cnt1=0,cnt2=0;
for(i=d1-1;i>0;i--)
{
if(s1[i]=='a') {cnt1++;continue;}
else break;
}
f2=i;
for(i=0;i<d1;i++)
{
if(s1[i]=='a') {cnt2++;continue;}
else break;
}
f1=i;
if(cnt2>=cnt1)
{
scNo;
return 0;
}
for(int i=f1;i<=f2;i++)
{
s2+=s1[i];
}
int ff=0;
for(int i=0;i<s2.length()/2;i++)
{
if(s2[i]!=s2[s2.length()-i-1])
{
ff=1;
}
}
if(ff==0)
{
scYes
}
else
{
scNo;
}
}
return 0;
}
D - LR insertion
题意:给你n+1个数,然后按照它所给的字符串的要求,比如说如果给你一个字符串是
"LR”,那么第一步则是把0的左边添加一个1,然后再从1的右边添加一个2,所以最后的结果就是120
思路:一开始想用队列和栈之类的数据结构去做,发现好像都无法解决这个问题,然后又把链表忘得差不多了,结果一点开题解发现他们居然说是双端队列???WTF,想了好久发现不可能啊,结果一看别人的代码第一步就把字符串反转了,所以这里需要一个逆向的思想,如果把所有的操作逆向,你就会发现这是一个双端队列的裸体,不过我还是没发现他们是怎么想出来滴。。。
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n,i,j,t;
string s1;
deque<int >d1;
cin>>n>>s1;
reverse(s1.begin(),s1.end());
d1.push_back(n);
n-=1;
for(i=0;i<s1.length();i++)
{
if(s1[i]=='L')
{
d1.push_front(n);
}
else
{
d1.push_back(n);
}
n-=1;
}
int length=d1.size();
reverse(d1.begin(),d1.end());
for(i=0;i<length;i++)
{
cout<<d1.front()<<" ";
d1.pop_front();
}
return 0;
}