题目描述
给定一个无向连通图,顶点编号从0到n-1,用广度优先搜索(BFS)遍历,输出从某个顶点出发的遍历序列。(同一个结点的同层邻接点,节点编号小的优先遍历)
输入
输入第一行为整数n(0< n <100),表示数据的组数。
对于每组数据,第一行是三个整数k,m,t(0<k<100,0<m<(k-1)*k/2,0< t<k),表示有m条边,k个顶点,t为遍历的起始顶点。
下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。
对于每组数据,第一行是三个整数k,m,t(0<k<100,0<m<(k-1)*k/2,0< t<k),表示有m条边,k个顶点,t为遍历的起始顶点。
下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。
输出
输出有n行,对应n组输出,每行为用空格隔开的k个整数,对应一组数据,表示BFS的遍历结果。
示例输入
1 6 7 0 0 3 0 4 1 4 1 5 2 3 2 4 3 5
示例输出
0 3 4 2 5 1
#include<stdio.h> #include<string.h> #include<stdlib.h> int ls[110][110], bj[150]; int d[1000], c; int h1 = 0, r1 = 0, k; void diao(int t) { int i; if(c == k) return; for(i = 0; i < k; i++) { if(!bj[i] && ls[t][i]) { printf("%d",i); bj[i] = 1; d[r1++] = i; c++; if(c < k) printf(" "); } } if(h1 < k - 1) diao(d[h1++]); } int main() { int t, n; scanf("%d",&n); while(n--) { int m, i; c = 0; h1 = 0; r1 = 0; scanf("%d%d",&k,&m); scanf("%d",&t); memset(ls,0,sizeof(ls)); memset(bj,0,sizeof(bj)); for(i = 0; i < m; i++) { int u, v; scanf("%d%d",&u,&v); ls[u][v] = 1; ls[v][u] = 1; } printf("%d ",t); bj[t] = 1; diao(t); printf("\n"); } return 0; }