遥感影像的特征空间图


title: 遥感影像的特征空间图
date: 2018-04-09
categories: 遥感图像处理
tags:
- gdal
- python

遥感影像的特征空间图

定义

在模式识别中,通常将遥感单波段数据称为特征。为了真正认识遥感数据集中两个波段(特征)如何协同变化以及是否相关,通常绘制两个波段的特征空间图。

二维特征空间图提取两个波段的所有像元亮度值,并且将其出现的频率描绘在255×255(假定为8bit的数据)特征空间中。数值对出现的频率越大,特征空间像元就越亮。用图形检验波段间统计关系更为直观。

代码实现

下面以TM第1、2波段数据为例绘制特征空间图

import gdal
import numpy as np
import matplotlib.pyplot as plt
import PIL.Image

dataset1 = gdal.Open("b1.tif")
dataset2 = gdal.Open("b2.tif") #利用gdal读取第1、2波段
im_width = dataset1.RasterXSize  # 栅格矩阵的列数
im_height = dataset1.RasterYSize  # 栅格矩阵的行数
im_data1 = dataset1.ReadAsArray(0, 0, im_width, im_height)  # 获取数据
im_data2 = dataset2.ReadAsArray(0, 0, im_width, im_height)  
value = np.zeros((256, 256),dtype=float)
band1 = np.array(im_data1)
band2 = np.array(im_data2)
band11 = band1.flatten()
band21 = band2.flatten()
band11.astype(int)
band21.astype(int)

pixel_num = im_width1 * im_height1

for x in range(pixel_num):
    value[band11[x]][band21[x]] = value[band11[x]][band21[x]]+1
value=value[::-1]
img = PIL.Image.fromarray(value)


img.show()

生成的特征空间图如下

image

可以发现这景TM影像的1,2波段具有高度的相关性

### 遥感影像特征热的生成、处理与应用 #### 1. 遥感影像特征热的概念 遥感影像中的特征热是一种可视化工具,用于展示特定区域内的目标分布密度或属性强度。通过颜色梯度表示不同像素的重要性或概率值,帮助研究人员更直观地理解数据特性。 #### 2. 热的生成方法 热可以通过多种方式生成,其中一种常见的方式是基于卷积神经网络(CNN)提取特征并计算激活值[^3]。具体过程包括: - 使用预训练模型对输入遥感影像进行前向传播。 - 提取中间层的特征映射(Feature Maps),这些映射反映了模型关注的不同空间区域。 - 将特征映射转换为热形式,通常采用加权求和或其他聚合操作完成。 ```python import numpy as np from keras.preprocessing import image from keras.models import Model def generate_heatmap(model, img_path, layer_name): # 加载像并调整大小 img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) # 创建子模型以访问指定层 grad_model = Model(inputs=model.inputs, outputs=[model.get_layer(layer_name).output, model.output]) with tf.GradientTape() as tape: conv_outputs, predictions = grad_model(x) loss = predictions[:, np.argmax(predictions[0])] grads = tape.gradient(loss, conv_outputs)[0] guided_grads = ( tf.cast(conv_outputs > 0, "float32") * tf.cast(grads > 0, "float32") * grads ) weights = tf.reduce_mean(guided_grads, axis=(0, 1)) cam = np.ones(conv_outputs.shape[0:2], dtype=np.float32) for i, w in enumerate(weights): cam += w * conv_outputs[:, :, i] cam = cv2.resize(cam.numpy(), (img.size)) cam = np.maximum(cam, 0) heatmap = (cam - cam.min()) / (cam.max() - cam.min()) return heatmap ``` 上述代码展示了如何利用Grad-CAM技术生成热。 #### 3. 数据集的选择 对于遥感影像特征热的研究,可以选用功能性强的数据集如fMoW(Functional Map of the World)。该数据集中包含了大量标注好的遥感影像及其对应的元数据信息,有助于构建精确的目标检测模型[^2]。 #### 4. 形几何与拓扑预测的应用 除了传统的分类任务外,还可以结合先进的算法框架来进行更加复杂的分析工作,比如形几何和拓扑结构预测。这种方法不仅提高了预测精度,还显著减少了运算时间成本[^4]。 #### 5. 平台推荐 如果希望快速上手体验遥感影像解译流程,则可以尝试SenseEarth智能遥感影像解译平台。它提供了友好的界面以及高效的自动化处理能力,尽管存在免费版次数限制的问题,但对于初步探索来说已经足够强大[^1]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值