在古埃及,人们使用单位分数的和(形如 的, 是自然数)表示一切有理数。如:,但不允许 ,因为加数中有相同的。对于一个分数 ,表示方法有很多种,但是哪种最好呢?首先,加数少的比加数多的好,其次,加数个数相同的,最小的分数越大越好。如:
最好的是最后一种,因为 比 都大。
注意,可能有多个最优解。如:
由于方法一与方法二中,最小的分数相同,因此二者均是最优解。
给出 ,编程计算最好的表达方式。保证最优解满足:最小的分数 。
输入格式
一行两个整数,分别为 和 的值。
输出格式
输出若干个数,自小到大排列,依次是单位分数的分母。
样例
样例输入
19 45
样例输出
5 6 18
这道题我感觉很难理解,翻了n篇博客后终于明白了,我自己的理解,感觉很好看懂
//剪枝1 当前已经找到分母i了,要分解的分数为x/y,还需要找deep-step+1个分数
//如果if为真 也就是说 全是1/i也达不到x/y,就可以直接return了
//剪枝2 若最小的分母为t 则必有(deep-step+1)*(1/t)<=x/y 意思是,如果都用最小的分数 肯定小于等于要分解的分数
// 所以t可以作为起点
#include<bits/stdc++.h>
using namespace std;
ll res[200],temp[200];
ll deep;
ll gcd(ll a,ll b)
{
return b?gcd(b,a%b):a;
}
bool judge(ll step)
{
if(res[step]==-1