动态规划---最长上升子序列(百练ID2757)

描述一个数的序列 bi,当 b1 <  b2 < ... <  bS的时候,我们称这个序列是上升的。对于给定的一个序列( a1a2, ...,  aN),我们可以得到一些上升的子序列( ai1ai2, ...,  aiK),这里1 <=  i1 <  i2 < ... <  iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).

你的任务,就是对于给定的序列,求出最长上升子序列的长度。输入输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。输出最长上升子序列的长度。样例输入
7
1 7 3 5 9 4 8
样例输出
4
 
#include<iostream>
#include<algorithm>
using namespace std;
int a[10001], maxlen[10001];
int  main()
{	
	int N; cin >> N;
	for (int i = 1; i <= N; ++i){
		cin >> a[i]; maxlen[i] = 1;
	}
	for (int i = 2; i <= N;++i)
	{
		for (int j = 1; j < i;++j)//i左边的最长子序列
		{
			if (a[i]>a[j])
				maxlen[i] = max(maxlen[i], maxlen[j] + 1);
		}
	}
	cout << *max_element(maxlen+1, maxlen + N + 1)<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值