描述一个数的序列
bi,当
b1 <
b2 < ... <
bS的时候,我们称这个序列是上升的。对于给定的一个序列(
a1,
a2, ...,
aN),我们可以得到一些上升的子序列(
ai1,
ai2, ...,
aiK),这里1 <=
i1 <
i2 < ... <
iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).
你的任务,就是对于给定的序列,求出最长上升子序列的长度。输入输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。输出最长上升子序列的长度。样例输入
你的任务,就是对于给定的序列,求出最长上升子序列的长度。输入输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。输出最长上升子序列的长度。样例输入
7 1 7 3 5 9 4 8样例输出
4
#include<iostream>
#include<algorithm>
using namespace std;
int a[10001], maxlen[10001];
int main()
{
int N; cin >> N;
for (int i = 1; i <= N; ++i){
cin >> a[i]; maxlen[i] = 1;
}
for (int i = 2; i <= N;++i)
{
for (int j = 1; j < i;++j)//i左边的最长子序列
{
if (a[i]>a[j])
maxlen[i] = max(maxlen[i], maxlen[j] + 1);
}
}
cout << *max_element(maxlen+1, maxlen + N + 1)<<endl;
return 0;
}