深度学习d5:卷积神经网络基础;leNet;卷积神经网络进阶

卷积神经网络基础

卷积神经网络:包括卷积层池化层

  • 二维卷积层:

    最常用,用于处理图像数据,将输入和卷积核做互相关运算,并加上一个标量偏置来得到输出。

    其模型参数=卷积核+标量偏置

    训练模型的时候,通常我们先对卷积核随机初始化,然后不断迭代卷积核和偏差,即可通过数据学习核数组。每次迭代中,将输出与真实值进行比较,然后计算梯度进行更新。

    可用来进行图像边缘检测

    互相关运算和卷积运算:
    两者十分相似,将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。两者都是学习出来的,其实可以互相替换的。

  • 填充和步幅:

    卷积层的输出形状由输入形状和卷积核窗口形状决定。
    填充和步幅以对给定形状的输入和卷积核改变输出形状
    填充:在输入高和宽的两侧填充元素(通常是0),一般会让高增加 k h − 1 k_h-1 kh1,宽增加 k w − 1 k_w-1 kw1,使得输入和输出具有相同的高和宽。
    步幅:卷积核在输入数组上滑动,每次滑动的行数与列数

    填充可以增加输出的高和宽。这常用来使输出与输入具有相同的高和宽。
    步幅可以减小输出的高和宽,例如输出的高和宽仅为输入的高和宽的 1/𝑛(n为大于1的整数)。

  • 多输入通道和多输出通道

    多输入通道
    设通道数为 c i c_i ci,把他们在输入通道维上连结,即得到一个形状为 c i × k h × k w c_i\times k_h\times k_w ci×kh×kw的卷积核。
    各个通道上对输入的二维数组和卷积核的二维核数组做互相关运算,再将这 𝑐𝑖个互相关运算的二维输出按通道相加,得到一个二维数组

    多输出通道:卷积层的输出也可以包含多个通道,为每个输出通道分别创建形状为 c i × k h × k w c_i\times k_h\times k_w ci×kh×kw的核数组。将它们在输出通道维上连结,卷积核的形状即 c o × c i × k h × k w c_o\times c_i\times k_h\times k_w co×ci×kh×kw

    1 × 1 1\times 1 1×1卷积层
    输出中的每个元素来自输入中在高和宽上相同位置的元素在不同通道之间的按权重累加。假设我们将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么 1×1卷积层的作用与全连接层等价
    在这里插入图片描述
    1 × 1 1\times 1 1×1卷积层被当作保持高和宽维度形状不变的全连接层使用。于是,我们可以通过调整网络层之间的通道数来控制模型复杂度

卷积层优势: 一是全连接层把图像展平成一个向量,在输入图像上相邻的元素可能因为展平操作不再相邻,网络难以捕捉局部信息。而卷积层的设计,天然地具有提取局部信息的能力。二是卷积层的参数量更少

卷积层的实现:nn.Conv2d

  • 池化层

    我们感兴趣的物体不会总出现在固定位置,会对后面的模式识别造成不便。池化层主要用于缓解卷积层对位置的过度敏感性

    二维最大池化层和平均池化层
    同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出,但池化层直接计算池化窗口内元素的最大值或者平均值,该运算也分别叫做最大池化或平均池化。

    多通道
    池化层的输出通道与输入通道数相等,不像卷积层那样直接相加。

    池化层的实现:nn.MaxPool2d

LeNet

LeNet交替使用卷积层和最大池化层后接全连接层来进行图像分类。

其中卷积层用来识别图像里的空间模式,如线条和物体局部。之后的最大池化层则用来降低卷积层对位置的敏感性

卷积层块的输出形状为(批量大小, 通道, 高, 宽)。

全连接层块会将小批量中每个样本变平,即全连接层的输入形状将变成二维,其中第一维是小批量中的样本,第二维是每个样本变平后的向量表示,且向量长度为通道、高和宽的乘积。
在这里插入图片描述
实现

#net
class Flatten(torch.nn.Module):  #展平操作
    def forward(self, x):
        return x.view(x.shape[0], -1)

class Reshape(torch.nn.Module): #将图像大小重定型
    def forward(self, x):
        return x.view(-1,1,28,28)      #(B x C x H x W)
    
net = torch.nn.Sequential(     #Lelet                                                  
    Reshape(),
    nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, padding=2), #b*1*28*28  =>b*6*28*28
    nn.Sigmoid(),                                                       
    nn.AvgPool2d(kernel_size=2, stride=2),                              #b*6*28*28  =>b*6*14*14
    nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5),           #b*6*14*14  =>b*16*10*10
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),                              #b*16*10*10  => b*16*5*5
    Flatten(),                                                          #b*16*5*5   => b*400
    nn.Linear(in_features=16*5*5, out_features=120),
    nn.Sigmoid(),
    nn.Linear(120, 84),
    nn.Sigmoid(),
    nn.Linear(84, 10)
)

卷积神经网络进阶

  • AlexNet 深度卷积,学到的特征可以超过手工设计的特征
  1. 8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。
  2. 将sigmoid激活函数改成了更加简单的ReLU激活函数
  3. 用Dropout(丢弃法)来控制全连接层的模型复杂度。
  4. 引入数据增强,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合。
  5. 和LeNet类似,但使用了更多的卷积层和更大的参数空间来拟合大规模数据集ImageNet。它是浅层神经网络和深度神经网络的分界线。

以下均为构建深度模型的思路

  • VGG 通过重复使⽤简单的基础块来构建深度模型

    VGG Block
    组成规律是:连续使用数个相同的填充为1、窗口形状为 3 × 3 3\times 3 3×3卷积层后接上一个步幅为2、窗口形状为 2 × 2 2\times 2 2×2最大池化层。卷积层保持输入的高和宽不变,而池化层则对其减半,通道数翻倍。

    VGG网络
    由卷积层模块后接全连接层模块构成。
    VGG-11是8个卷积层,3个全连接层的网络。其中8个卷积层为5个卷积块,前2为单卷积层,后3为双卷积层。

    def vgg_block(num_convs, in_channels, out_channels): #卷积层个数,输入通道数,输出通道数
        blk = []
        for i in range(num_convs):
            if i == 0:
                blk.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))
            else:
                blk.append(nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1))
            blk.append(nn.ReLU())
        blk.append(nn.MaxPool2d(kernel_size=2, stride=2)) # 这里会使宽高减半
        return nn.Sequential(*blk)
    
  • NiN 网络中的网络

    与LeNet、AlexNet和VGG“先以由卷积层构成的模块充分抽取 空间特征,再以由全连接层构成的模块来输出分类结果”不同,NiN串联多个由卷积层和“全连接”层构成的小⽹络来构建⼀个深层⽹络。(左为AlexNet和VGG,右为NiN
    在这里插入图片描述NiN重复使⽤由卷积层和代替全连接层的1×1卷积层构成的NiN块来构建深层⽹络。

    NiN去除了容易造成过拟合的全连接输出层,而是将其替换成输出通道数等于标签类别数 的NiN块和全局平均池化层。

  • GoogLeNet

    Inception基础块组成。
    在这里插入图片描述
    Inception块相当于⼀个有4条并行线路的⼦⽹络。它通过不同窗口形状的卷积层和最⼤池化层来并⾏抽取不同空间尺寸下的信息,并使⽤1×1卷积层****减少通道数从而降低模型复杂度。

    可以⾃定义的超参数每个层的输出通道数,我们以此来控制模型复杂度。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值