Prime Ring Problem(素环问题)(dfs经典模板题)HDU - 1016

本文介绍了一个名为PrimeRingProblem的编程挑战,涉及将1到n的自然数放入环形结构中,相邻两数之和必须为素数。要求输出所有符合要求的数字序列,按字典序排列。程序示例展示了如何使用递归和深度优先搜索来解决这个问题。
摘要由CSDN通过智能技术生成

题目:Prime Ring Problem(素环问题)

A ring is compose of n circles as shown in diagram. Put natural number 1, 2, …, n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.

Note: the number of first circle should always be 1.
在这里插入图片描述

Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.

You are to write a program that completes above process.

Print a blank line after each case.
Sample Input
6
8
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4

Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2

中文大意

如图所示,一个环由 n 个圆组成。将自然数1、2、…、n分别放入每个圆中,相邻两个圆内数之和应为素数。

注意:第一个圆圈的数量应始终为 1。
在这里插入图片描述

输入
n (0 < n < 20)。
输出
输出格式如下所示。每行代表环中从 1 开始顺时针和逆时针的一系列圆圈数字。编号顺序必须满足上述要求。按字典顺序打印解决方案。

您将编写一个完成上述过程的程序。

在每个案例之后打印一个空行。
样本输入
6
8
样本输出
情况1:
1 4 3 2 5 6
1 6 5 2 3 4

案例2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2

实现代码:

#include<stdio.h>
#include<string.h>
int n,a[20],b[41],c[20];
int prime(int x)
{
	for(int i=2; i*i<=x; i++)
	
		if(x%i==0)
		{
			return 0;break;
 		}
	
			return 1;
	
	
}

void dfs(int num)
{

	if(num==n&&b[a[0]+a[n-1]]==1)
	{
		for(int i=0;i<n-1;i++)
			printf("%d ",a[i]);
		printf("%d\n",a[n-1]);
		
	}
	else
	{
		for(int i=2; i<=n; i++)
		{
			if(!c[i]&&b[i+a[num-1]])
			{
				a[num]=i;
				c[i]=1;
				dfs(num+1);
				c[i]=0;
			}
		}
	}
	
}
int main()
{
	for(int i=2; i<=40; i++)
	{
		b[i]=prime(i);
	}
	int k=1;
	while(scanf("%d",&n)!=EOF)
	{
		a[0]=1;
		printf("Case %d:\n",k++);
		if(n%2==0)
			dfs(1);
		printf("\n");
	}	

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值