问题:给定一根长度为n的绳子,请把绳子剪成m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],…,k[m]。请问k[0]* k[1] * … *k[m]可能的最大乘积是多少?
动态规划:
<1>问题是求最优解;
<2>整体的问题的最优解是依赖各个子问题的最优解;
<3>子问题之间还有互相重叠的更小的子问题;
<4>从上往下分析问题,从下往上求解问题。
<5>为避免子问题的重复计算,我们存储子问题的最优解。
定义函数f(n)表示为把长度为n的绳子剪成若干段后各段长度乘积的最大值。
对于第一刀,我们有n-1种可能的选择,可推导出f(n)=max{f(i)*f(n-i)};
很明显这是一个从上至下的递归,但是这个递归存在很多重复的计算,所以使用至下而上的动态规划,将子问题的最优解保存。
注意绳子剪成ix(n-i)和(n-i)xi是相同的;
注意不符合切割条件的输入n,以及输入为2、3长度时的结果,因为题中规定m>1。
class Solution {
public:
int maxProduct (int length)
{
if (length < 2) return 0;
if (length == 2) return 1;
if (length == 3) return 2;
int* products = new int[length + 1];
products[0] = 0;
products[1] = 1;
products[2] = 2;
products[3] = 3;
int max = 0;
for (int i = 4; i <= length; ++i) {
max = 0;
for (int j = 1; j <= i / 2; ++j) {
int product = products[j] * products[i - j];
if (max < product)
max = product;
products[i] = max;
}
}
max = products[length];
delete[] products;
return max;
}
};
贪心算法:
贪心算法在对问题求解时,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解;
选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关;
题目贪婪策略:当n>=5时,尽可能多地剪长度为3的绳子;当剩下的绳子长度为4时,把绳子剪成两段长度为2的绳子。
class Solution {
public:
int maxProduct (int length)
{
if (length < 2) return 0;
if (length == 2) return 1;
if (length == 3) return 2;
int timesOf3 = length / 3;
if (length - timesOf3 * 3 == 1)
timesOf3--;
int timesOf2 = (length - timesOf3 * 3) / 2;
int result = pow(3, timesOf3) * pow(2, timesOf2);
return result;
}
};
当n<5时,我们会发现,无论怎么剪切,乘积product <= n,n为4时,product最大为2*2=4;
当n>=5时,可以证明2(n-2)>n并且3(n-3)>n。而且3(n-3)>=2(n-2)。所以我们应该尽可能地多剪长度为3的绳子段。
算法相关;
动态规划:
什么是动态规划?动态规划的意义是什么?(https://www.zhihu.com/question/23995189)
http://blog.csdn.net/koala_tree/article/details/77844584
贪心算法:
http://blog.csdn.net/koala_tree/article/details/77899069
参考博客:
主要参考博文:https://blog.csdn.net/Koala_Tree/article/details/78932316
次要参考博文:https://blog.csdn.net/Tianzez/article/details/79170591