题目一:一个整型数组里除了两个数字之外,其他的数字都出现了两次。请写程序找出这两个只出现一次的数字。
异或的基本性质:2个相同的数异或等于0,且异或操作(^)满足结合律和交换律。
首先:一个整型数组里除了1个数字之外,其他的数字都出现了两次。请写程序找出这个只出现一次的数字。
// 找出数组中只出现一次的数
void FindNumsAppearOnce(vector<int> data, int* num)
{
if (data.size() == 0)
{
return;
}
*num = 0;
for(unsigned int i = 0; i < data.size(); ++i)
{
*num ^= data[i];
}
}
其次:
/*考虑过程:
首先我们考虑这个问题的一个简单版本:一个数组里除了一个数字之外,其他的数字都出现了两次。请写程序找出这个只出现一次的数字。
这个题目的突破口在哪里?题目为什么要强调有一个数字出现一次,其他的出现两次?我们想到了异或运算的性质:任何一个数字异或它自己都等于0 。也就是说,如果我们从头到尾依次异或数组中的每一个数字,那么最终的结果刚好是那个只出现一次的数字,因为那些出现两次的数字全部在异或中抵消掉了。
有了上面简单问题的解决方案之后,我们回到原始的问题。如果能够把原数组分为两个子数组。在每个子数组中,包含一个只出现一次的数字,而其它数字都出现两次。如果能够这样拆分原数组,按照前面的办法就是分别求出这两个只出现一次的数字了。
我们还是从头到尾依次异或数组中的每一个数字,那么最终得到的结果就是两个只出现一次的数字的异或结果。因为其它数字都出现了两次,在异或中全部抵消掉了。由于这两个数字肯定不一样,那么这个异或结果肯定不为0 ,也就是说在这个结果数字的二进制表示中至少就有一位为1 。我们在结果数字中找到第一个为1 的位的位置,记为第N 位。现在我们以第N 位是不是1 为标准把原数组中的数字分成两个子数组,第一个子数组中每个数字的第N 位都为1 ,而第二个子数组的每个数字的第N 位都为0 。
现在我们已经把原数组分成了两个子数组,每个子数组都包含一个只出现一次的数字,而其它数字都出现了两次。因此到此为止,所有的问题我们都已经解决。*/
class Solution {
public:
void FindNumsAppearOnce(vector<int> data, int* num1, int* num2)
{
if (data.size() < 2)
return;
int size = data.size();
int temp = data[0];
for (int i = 1; i < size; i++)
temp = temp ^ data[i];
if (temp == 0)
return;
int index = 0;
while ((temp & 1) == 0)
{
temp = temp >> 1;
++index;
}
*num1 = *num2 = 0;
for (int i = 0; i < size; i++)
{
if (IsBit(data[i], index))
*num1 ^= data[i];
else
*num2 ^= data[i];
}
}
bool IsBit(int num, int index)
{
num = num >> index;
return (num & 1);
}
};
题目二:数组中唯一出现一次的数字
在一个数组中除了一个数字只出现一次之外,其他数字都出现了三次,请找出那个只出现一次的数字。
思路:
出现3次就不能再用异或的方法了,因为三个相同的数异或还是得到本身。但是还是可以采用位运算的思想,因为出现三次的数字每个位(0或者1)也是出现三次,因此可以每一位的和能够被3整除(对3取余为0)。所以如果把每个数的二进制表示的每一位加起来,对于每一位的和,如果能被3整除,那对应那个只出现一次的数字的那一位就是0,否则对应的那一位是1。
我们需要用一个长度为32(int型二进制表示最多为32位,4字节)的数组bitSum保存每一位的和,具体来讲实现过程是,先初始化为0,然后对于每个数字,遍历它二进制表示的每一位,如果这一位是1,bitSum对应的那一位就加1。
时间复杂度为O(n),空间复杂度为O(1)
int FindNumberAppearingOnce(vector<int> numbers)
{
int bitSum[32]={0};
for(int i=0;i<numbers.size();i++)
{
int bit=1;//对于每个数都从最低位开始判断
for(int j=31;j>=0;j--)
{
if(numbers[i]&bit==1)
bitSum[j]++;
bit=bit<<1;//接下来判断高一位,左移一位
}
}
int result=0;
for(int j=0;j<32;j++)
{
result=result<<1;//先把当前结果左移到高位
result+=bitSum[j]%3;//然后把当前位应该为0还是1填上去
}
return result;
}